

© 2023, IJCSE All Rights Reserved 12

International Journal of Computer Sciences and Engineering
Vol.11, Special Issue.1, pp.12-28, November 2023

ISSN: 2347-2693 (Online)

Available online at: www.ijcseonline.org

Research Paper

Comparative Study of Time Series Algorithms on Stock Price Forecasting

Mehul Kundu
1*

, Arpan Bose
2

, Debasmita Guha
3

 , Romit Das
4

, Aftab Alam
5

Corresponding Author: edu.mehul@gmail.com

Abstract: Gauging the pulse of political climes and global tides alike, the stock exchange carries considerable consequence.

Given the capricious manner by which the apparatus maneuvers, present technological means and trade tenets forbid accurately

foretelling how planetary perturbations may sway share values over extended time. Of late, nonetheless, informatic techniques

and artificially adroit algorithms have enabled scrutinizing episodes and occurrences that surface symbiotically, prognosticating

the trajectory of equity prices for most, if not all, corporations in qualifying bourses.

Past the fluctuating cultural zeitgeists and mercantile vicissitudes defining our epoch's global political topography,

prognosticating distant futures proves an elusive enterprise.

Our objective henceforth shall be to prognosticate the quotidian inclination of equity premiums in the stock bazaar with the

utmost precision achievable. The Stacking Ensemble model is a prevalent and trustworthy fashion to anticipate chronological

successions. We shall explain why we opt for it over and above the other techniques adduced, akin to Meta Prophet, and the

LSTM modus operandi, posterior to assaying. We manipulate a combination exemplar to ascertain the weighted norm of all in-

sample data. In this exploration, we endeavored to disparate things with the stock valuations of multiple shareholding fully

remunerated ordinary portions and thereafter effectuated predictions about stock valuations.

Keywords: Stock price forecast, ARIMA, SARIMA, LSTM, Meta Prophet, GRU, Kalman Filter, Ensemble

1. Introduction

1.1 Time Series

A grouping of data points that are compiled in a sequential

manner is commonly known as a time series. Information that

has been collected and documented progressively, often

labeled as time series data, possesses the capability to be

employed in detecting inclinations or designs of conduct.

The four components of a time series are:

Level: This is the baseline or average value of the series. It

represents the expected value of the series over time, without

any upward or downward trends or seasonal fluctuations.

Trend: This component refers to the long-term direction of

the series. The depiction pertains to the all-encompassing

formation of a sequence throughout an extensive duration,

akin to either an upward or downward inclination.

Seasonality: The facet of seasonality denotes the reoccurring,

cyclical oscillations present in the series over a predetermined

time frame including but not limited to days, weeks or

months. The fluctuation in regularity, known as seasonality,

can be influenced by multiple determinants consisting of

distinct weather patterns, holiday seasons or customary

occasions.

Noise: This component refers to random fluctuations or

irregularities in the series that cannot be explained by the

other components. This denotes the indeterminate aberration

in a sequence caused by fortuitous occurrences, inaccuracies

in measurement, or other instigating circumstances.

It's important to note that trend and seasonality components

are optional since series can be stationary.

2. Related Work

ARIMA (Autoregressive Integrated Moving Average):

ARIMA models have been extensively studied and applied in

various fields, particularly in time series forecasting. The

literature on ARIMA models spans several decades and

covers a wide range of topics, including model development,

estimation techniques, diagnostic tools, and practical

applications.

One of the foundational works in ARIMA modeling is the

classic paper by Box and Jenkins (1970), titled "Time Series

Analysis: Forecasting and Control," where they introduced

the concept of ARIMA models and presented the Box-Jenkins

methodology for model identification, estimation, and

diagnostic checking.

Since then, numerous researchers have made significant

contributions to the ARIMA literature. For example,

Hamilton (1994) in his book "Time Series Analysis" provides

a comprehensive treatment of ARIMA models, including

model selection, estimation, and inference.

https://orcid.org/0009-0002-6569-3031
https://orcid.org/0009-0008-9841-854X
https://orcid.org/0009-0000-4889-1752
https://orcid.org/0009-0006-4029-5300
https://orcid.org/0009-0000-3564-9190

International Journal of Computer Sciences and Engineering Vol.11(1), Nov 2023

© 2023, IJCSE All Rights Reserved 13

GRUs were proposed by Kyunghyun Cho, et al., in 2014 as

an alternative to LSTMs. GRUs simplify the LSTM

architecture, having two gates (update and reset) compared to

the LSTM's three gates.

Cho, K., et al. (2014). "On the Properties of Neural Machine

Translation: Encoder-Decoder Approaches." This paper

introduced GRUs and discussed their use in machine

translation tasks.

Chung, J., et al. (2014). "Empirical Evaluation of Gated

Recurrent Neural Networks on Sequence Modeling." This

paper offers empirical evaluations of GRUs in sequence

modeling tasks.

LSTMs, introduced by Hochreiter and Schmidhuber in 1997,

are a type of recurrent neural network (RNN) designed to

avoid the problem of vanishing gradients. They use a cell

state and three gates (input, forget, and output) to control the

flow of information.

Hochreiter, S., & Schmidhuber, J. (1997). "Long Short-Term

Memory." This is the seminal paper that introduced LSTMs.

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999).

"Learning to Forget: Continual Prediction with LSTM." This

paper introduced the concept of the forget gate in LSTMs.

The Kalman filter, introduced by Rudolf E. Kálmán in 1960,

is an algorithm that uses a series of measurements observed

over time and produces estimates of unknown variables by

estimating a joint probability distribution over the variables

for each timeframe.

Kalman, R. E. (1960). "A New Approach to Linear Filtering

and Prediction Problems." This is the original paper

introducing the Kalman filter.

Maybeck, P. S. (1979). "Stochastic Models, Estimation, and

Control, Volume 1." This book provides a comprehensive

understanding of the Kalman filter and its applications.

3. Theory/Calculation

Since the market is typically closed on weekends and major

holidays depending on the region, stock data (if considered

daily) has regular intervals in it unlike any other time series.

Therefore, we must ensure consistency before making any

predictions using stock data. Predictions can only be made

with confidence when all variables are consistent.

However, the key to success is to identify reliable and

relevant information and to make informed decisions based

on the research and analysis. Forecasting stock performance

can be a challenging task, but it is essential in order to make

informed investment decisions.

Finding the missing data

In order to determine the date range, we started by taking the

first and last dates in the series. Afterward, discover how

many dates are present and how many are absent. (It will

change depending on the stock and region.)

Filling in the missing data

One frequently encounters the interpolate() function within

data analysis libraries such as Pandas or NumPy, which is a

pre-existing mode of operation. It serves to fill gaps or

missing time series values, making it extremely useful for this

purpose. In order to approximate the absent data in a series

over time, diverse techniques for interpolation like

polynomial, cubic and linear are utilized within this function.

By relying on known values present in the given set of

information points, these methods provide estimates that

bridge any gaps or missing pieces found therein. The function

can therefore be used on time series data - both regular and

irregular. Selecting parameters for the interpolation method is

largely dependent upon the data's unique characteristics. It

became possible for us to realize a more comprehensive

dataset by virtue of the function called .interpolate(). In so

doing, we managed to infill our time series with missing data

hence enabling us to generate plausible predictions using our

forecasting models. The effectiveness of the approximation

technique hinges on several factors, notably the preferred

interpolation approach, the frequency and design of

incomplete entries, as well as idiosyncrasies within temporal

data records.

The working of the interpolation function can be summarized

as follows:

Identify Missing Data: The first step is to identify the missing

data points in the time series dataset. These are typically

denoted by NaN (Not a Number) or any other designated

missing value indicator.

Select Interpolation Method: Next, an appropriate

interpolation method is chosen based on the characteristics of

the data and the specific requirements of the analysis.

Common interpolation methods include linear interpolation,

polynomial interpolation, spline interpolation, and nearest

neighbor interpolation. Each method has its own assumptions

and mathematical algorithms for estimating missing values.

Determine Interpolation Window: The interpolation window

refers to the range of adjacent data points used to estimate the

missing value. It can vary based on the specific interpolation

method and the nature of the time series data. For instance,

linear interpolation uses the two nearest observed data points

on either side of the missing value to estimate its value.

Perform Interpolation: The interpolation function applies the

selected interpolation method within the interpolation

window to estimate the missing values. The algorithm uses

mathematical calculations, such as linear equations,

polynomial equations, or spline functions, to determine the

estimated values based on the neighboring observed data

points.

Replace Missing Values: Once the missing values are

estimated through interpolation, they are substituted in the

time series dataset, replacing the original missing value

International Journal of Computer Sciences and Engineering Vol.11(1), Nov 2023

© 2023, IJCSE All Rights Reserved 14

indicators. This process fills in the gaps in the time series

data, ensuring a continuous and complete dataset.

Assess Interpolation Accuracy: It is important to evaluate the

accuracy and reliability of the interpolated values. This can be

done by comparing the interpolated values to any available

ground truth or by assessing the overall consistency and

smoothness of the filled-in time series. It is crucial to

consider the limitations and assumptions of the chosen

interpolation method and the impact it may have on the

accuracy of the interpolated values.

By utilizing the interpolation function, missing data points in

a time series can be estimated and filled in, enabling a more

complete and continuous dataset for further analysis and

forecasting. It provides a practical and efficient approach to

handle missing values in time series data and ensures that the

resulting dataset maintains the temporal order and integrity

required for meaningful analysis and decision-making.

AUTO SARIMA

ARIMA

The ARIMA model is a widely used time series forecasting

model that combines autoregression (AR), differencing (I),

and moving average (MA) components. It is effective in

capturing both short-term and long-term patterns in the data.

The ARIMA model is denoted as ARIMA(p, d, q), where:

p represents the order of the autoregressive component, which

captures the linear relationship between the current value and

previous values of the time series.

d represents the order of differencing, which is the number of

times the time series needs to be differenced to achieve

stationarity.

q represents the order of the moving average component,

which captures the relationship between the error terms and

the lagged values of the time series.

The general equation for an ARIMA(p, d, q) model can be

written as:

Y_t = c + Φ₁Y_(t-1) + Φ₂Y_(t-2) + ... + Φ_pY_(t-p) + θ₁ε_(t-

1) + θ₂ε_(t-2) + ... + θ_qε_(t-q) + ε_t …………...(1)

where:

Y_t is the value of the time series at time t.

c is a constant term.

Φ₁, Φ₂, ..., Φ_p are the autoregressive coefficients.

θ₁, θ₂, ..., θ_q are the moving average coefficients.

ε_t is the error term at time t.

ARIMA models are primarily used for univariate time series

forecasting, where only the historical values of a single

variable are considered.

SARIMA (Seasonal ARIMA)

The SARIMA model extends the ARIMA model by

incorporating the seasonal component. It is suitable for time

series data that exhibit seasonality, where patterns repeat at

regular intervals.

The SARIMA model is denoted as SARIMA(p, d, q)(P, D, Q,

s), where:

(p, d, q) represents the non-seasonal order of the AR, I, and

MA components, respectively.

(P, D, Q, s) represents the seasonal order of the AR, I, MA

components, and the length of the seasonal period,

respectively.

The general equation for a SARIMA(p, d, q)(P, D, Q, s)

model can be written as:

Y_t = c + Φ₁Y_(t-1) + Φ₂Y_(t-2) + ... + Φ_pY_(t-p) + θ₁ε_(t-

1) + θ₂ε_(t-2) + ... + θ_qε_(t-q) + Φ₁sY_(t-s) + Φ₂sY_(t-2s) +

... + Φ_PsY_(t-Ps) + θ₁sε_(t-s) + θ₂sε_(t-2s) + ... + θ_Qsε_(t-

Qs) + ε_t ………………………………...(2)

The seasonal component captures the periodic patterns in the

data, and its inclusion in the model enables better forecasting

accuracy for data with seasonal fluctuations.

SARIMA:

MAE: 141.8403469611237

MSE: 22660.744501731195

RMSE: 150.5348614166539

Fig 3.1 Sarima Prediction vs Actual on

TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR

LSTM

Long Short-Term Memory (LSTM) is a type of recurrent

neural network (RNN) architecture designed to overcome the

limitations of traditional RNNs in capturing long-term

dependencies in sequential data. LSTMs are particularly

effective in time series forecasting tasks due to their ability to

retain and utilize information over extended time intervals.

They consist of several key components:

Input Gate:

The input gate determines the relevance of new input to the

current cell state. It is computed as:

iₜ = σ(Wᵢ · [hₜ₋₁, xₜ] + bᵢ) ……………………………….....(4)

International Journal of Computer Sciences and Engineering Vol.11(1), Nov 2023

© 2023, IJCSE All Rights Reserved 15

where iₜ is the input gate activation, hₜ₋₁ is the previous hidden

state, xₜ is the current input, Wᵢ and bᵢ are the learnable

weights and biases associated with the input gate, and σ

represents the sigmoid activation function.

Forget Gate:

The forget gate determines what information from the

previous cell state should be forgotten. It is calculated as:

fₜ = σ(Wf · [hₜ₋₁, xₜ] + bf) ………………………………..(5)

where fₜ is the forget gate activation, Wf and bf are the

learnable weights and biases associated with the forget gate.

Cell State Update:

The cell state is updated by incorporating new input and

selectively forgetting previous information. It involves the

following steps:

C̃ₜ = tanh(Wc · [hₜ₋₁, xₜ] + bc) …………………..….(6)

where C̃ₜ represents the candidate cell state, Wc and bc are the

learnable weights and biases associated with the candidate

cell state.

Cell State Update Gate:

The cell state update gate determines how much of the

candidate cell state should be added to the current cell state. It

is calculated as:

gₜ = σ(Wg · [hₜ₋₁, xₜ] + bg) ………………………………..(7)

where gₜ is the cell state update gate activation, Wg and bg are

the learnable weights and biases associated with the cell state

update gate.

Cell State:

The cell state is updated by combining the previous cell state

with the candidate cell state, controlled by the forget gate and

the cell state update gate:

Cₜ = fₜ * Cₜ₋₁ + iₜ * gₜ ……………………………………...(8)

where Cₜ represents the updated cell state.

Output Gate:

The output gate determines the relevance of the current cell

state to the output. It is calculated as:

oₜ = σ(Wo · [hₜ₋₁, xₜ] + bo) ……………………………….(9)

where oₜ is the output gate activation, Wo and bo are the

learnable weights and biases associated with the output gate.

Hidden State:

The hidden state is calculated by applying the output gate to

the updated cell state:

hₜ = oₜ * tanh(Cₜ) ………………………………………...(10)

where hₜ represents the hidden state.

LSTMs employ these components to update and propagate

information over time, allowing them to capture long-term

dependencies in sequential data. By selectively remembering

and forgetting information, LSTMs can effectively handle

time series data with complex patterns and temporal

dependencies.

LSTM:

MAE: 64.59958984375

MSE: 5476.223884849548

RMSE: 74.00151272000828

Fig 3.2 LSTM Prediction vs Actual on

TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR

GRU

The Gated Recurrent Unit (GRU) model is a variant of

recurrent neural network (RNN) that is designed to capture

and learn long-term dependencies in sequential data. It is

particularly effective in tasks such as time series forecasting,

natural language processing, and speech recognition. The

GRU model achieves this by introducing gating mechanisms

that selectively update and reset information within the

hidden state.

The GRU model consists of two main gates: the update gate

(z) and the reset gate (r). These gates control the flow of

information and determine how much of the past information

to forget and how much of the new information to

incorporate.

The update gate (z) is responsible for deciding how much of

the previous hidden state (h) should be combined with the

candidate activation (h~) to produce the new hidden state

(h_t). The update gate is computed as follows:

z_t = sigmoid(W_z * x_t + U_z * h_(t-1)) ………….….(11)

The reset gate (r) determines how much of the previous

hidden state (h) should be forgotten or ignored when

computing the candidate activation. The reset gate is

calculated as follows:

International Journal of Computer Sciences and Engineering Vol.11(1), Nov 2023

© 2023, IJCSE All Rights Reserved 16

r_t = sigmoid(W_r * x_t + U_r * h_(t-1)) ……………...(12)

To compute the candidate activation (h~), which contains the

new information to be added to the hidden state, the reset gate

(r) is used to determine which parts of the previous hidden

state (h) to reset. The candidate activation is computed as

follows:

h~_t = tanh(W_h * x_t + U_h * (r_t ⊙ h_(t-1)))

….(13)

where ⊙ denotes element-wise multiplication.

Finally, the new hidden state (h_t) is computed by combining

the update gate (z) and the previous hidden state (h) with the

candidate activation (h~):

h_t = (1 - z_t) ⊙ h_(t-1) + z_t ⊙ h~_t ….(14)

The GRU model iteratively updates the hidden state based on

the input sequence, allowing it to capture and remember

relevant information over long sequences. The final hidden

state can then be used for various tasks, such as making

predictions or generating outputs.

The parameters W_z, U_z, W_r, U_r, W_h, and U_h are

learnable weight matrices that are optimized during the

training process using techniques like backpropagation

through time (BPTT) and gradient descent to minimize the

model's loss function.

 GRU:

MAE: 36.053271484375

MSE: 2143.8972117114067

RMSE: 46.30223765339432

Fig 3.3 GRU Prediction vs Actual on

TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR

PROPHET

The Prophet model is a time series forecasting model

developed by Facebook's Core Data Science team. It is

designed to handle the unique characteristics of time series

data, such as seasonality, trend changes, and outliers. The

Prophet model incorporates multiple components to capture

these patterns:

Trend Component:

The Prophet model assumes that the trend in the time series

can be modeled as a non-linear growth function. It uses a

piecewise linear or logistic growth model to capture changes

in the trend over time. The trend component is represented by

the equation:

g(t) = k(t) + ∑(n=1 to N) [a_n * f_n(t)] ….. (3)

where g(t) represents the modeled trend at time t, k(t) is the

baseline growth rate, a_n represents the individual seasonal

components, and f_n(t) represents the seasonal functions.

Seasonality Component:

Prophet accounts for seasonality patterns in the data by

incorporating multiple seasonal components, such as yearly,

weekly, and daily seasonality. It models these components

using Fourier series expansions to capture their periodic

nature.

Yearly Seasonality:

The yearly seasonality component captures the annual

patterns in the data. It is modeled using a Fourier series

expansion with user-defined parameters.

Weekly and Daily Seasonality:

Prophet also incorporates weekly and daily seasonality

components using similar Fourier series expansions. These

components capture the recurring patterns that occur within a

week or a day.

Holiday Effects:

The Prophet model allows the inclusion of known holidays

and their impact on the time series. Users can provide a list of

holidays and their corresponding dates, and the model

incorporates these effects into the forecast.

Uncertainty Estimation:

Prophet provides uncertainty estimation by modeling the

inherent noise and irregularities in the time series. It uses a

Monte Carlo simulation approach to generate a range of

possible future scenarios.

Model Fitting:

The Prophet model fits the time series data by optimizing the

model parameters using a procedure known as Markov chain

Monte Carlo (MCMC) sampling or a faster optimization

algorithm called L-BFGS. The fitting process minimizes the

difference between the observed data and the model's

predictions.

 Prophet:

MAE: 54.78821932346668

MSE: 4385.774347117845

RMSE: 66.2251791021953

International Journal of Computer Sciences and Engineering Vol.11(1), Nov 2023

© 2023, IJCSE All Rights Reserved 17

Fig 3.4 PROPHET Prediction vs Actual on

 TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR

KALMAN FILTER

The Kalman Filter is a recursive algorithm used for

estimating the state of a dynamic system based on noisy

observations. It is widely applied in various fields, including

time series analysis, control systems, and navigation. The

Kalman Filter consists of several key components:

State Transition Equation:

The state transition equation describes how the system

evolves over time. It is typically represented as:

xₜ = Fₜ₋₁ * xₜ₋₁ + Bₜ₋₁ * uₜ₋₁ + wₜ₋₁ ……………………….(15)

where xₜ is the state vector at time t, Fₜ₋₁ is the state transition

matrix, Bₜ₋₁ is the control input matrix, uₜ₋₁ is the control

input, and wₜ₋₁ is the process noise.

Observation Equation:

The observation equation relates the system's state to the

observed measurements. It is represented as:

zₜ = Hₜ * xₜ + vₜ …………………………………………..(16)

where zₜ is the observed measurement at time t, Hₜ is the

observation matrix, xₜ is the state vector, and vₜ is the

measurement noise.

State Estimate and Covariance:

The Kalman Filter maintains an estimate of the system's state

and its associated uncertainty, called the state estimate (x̂ₜ)

and the state covariance (Pₜ). These estimates are updated

based on the observed measurements and the predicted state.

Kalman Gain:

The Kalman Gain (Kₜ) determines the balance between the

predicted state and the observed measurement. It is calculated

as:

Kₜ = Pₜ₋₁ * Hₜᵀ * (Hₜ * Pₜ₋₁ * Hₜᵀ + Rₜ)⁻¹ ………………....(17)

where Pₜ₋₁ is the previous state covariance, Hₜᵀ is the

transpose of the observation matrix, Rₜ is the measurement

noise covariance.

State Update:

The state update step incorporates the observed measurement

to refine the state estimate. It is computed as:

x̂ₜ = xₜ₋₁ + Kₜ * (zₜ - Hₜ * xₜ₋₁) …………………………...(18)

Covariance Update:

The covariance update step updates the state covariance based

on the Kalman Gain. It is calculated as:

Pₜ = (I - Kₜ * Hₜ) * Pₜ₋₁ …………………………………..(19)

where I is the identity matrix.

Prediction Step:

The prediction step predicts the state and covariance for the

next time step using the state transition equation. It is

computed as:

xₜ₊₁₊ = Fₜ * x̂ₜ + Bₜ * uₜ …………………………………..(20)

Pₜ₊₁₊ = Fₜ * Pₜ * Fₜᵀ + Qₜ ………………………………….(21)

where Qₜ is the process noise covariance.

The Kalman Filter iteratively updates the state estimate and

covariance based on the observed measurements, and then

predicts the state and covariance for the next time step. This

recursive process allows for accurate estimation of the

system's state even in the presence of noisy measurements

and uncertain dynamics.

Kalman Filter:

MAE: 89.33440507567819

MSE: 8921.84962199587

RMSE: 94.45554309830563

Fig 3.5 KALMAN Prediction vs Actual on

 TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR

International Journal of Computer Sciences and Engineering Vol.11(1), Nov 2023

© 2023, IJCSE All Rights Reserved 18

ENSEMBLE MODELS

AVERAGE

The Average model, also known as the Simple Average

model, is a basic ensemble model used for time series

forecasting. In this approach, we combine the predictions

from multiple individual forecasting models by taking their

average. The Average model does not involve complex

equations or components. The process can be summarized as

follows:

Model Selection: We select a set of individual forecasting

models to include in the ensemble. These models can be

diverse in nature, such as ARIMA, exponential smoothing, or

neural networks.

Individual Model Training: We train each individual model

using historical time series data. The training process depends

on the specific modeling technique used for each model. For

example, ARIMA models require parameter estimation, while

neural networks require training using backpropagation.

Individual Model Forecasting: We make predictions using

each trained individual model on the test dataset or future

time points of interest. Each model generates its own set of

forecasts based on its learned patterns and characteristics.

Ensemble Combination: We combine the individual forecasts

by calculating their average. For each time point, we sum the

predictions from each model and divide by the total number

of models:

Forecast(t) = (1/N) * Σ Forecastₙ(t) ……………………..(22)

where Forecast(t) is the ensemble forecast at time t, N is the

total number of individual models, and Forecastₙ(t) represents

the forecast of the nth individual model at time t.

Evaluation and Performance: We assess the performance of

the Average model using appropriate evaluation metrics such

as mean squared error (MSE), mean absolute error (MAE), or

root mean squared error (RMSE). We compare the ensemble's

performance with the individual models and select the

appropriate metrics based on our forecasting goals.

The Average model is a simple and intuitive ensemble

approach that we can easily implement. It leverages the

diversity of individual models to reduce bias and provide a

more robust forecast. However, it does not consider the

varying strengths or accuracies of each individual model. It

assumes an equal weighting for all models, which may not be

optimal in certain cases.

 Average:

MAE: 28.41425993021154

MSE: 1409.217635076121

RMSE: 37.53954761416447

Fig 3.6 Average Prediction vs Actual on

 TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR

WEIGHTED AVERAGE

The Weighted Average model is an ensemble approach we

use for time series forecasting, where we combine the

predictions from multiple individual models using weighted

averages. This allows us to assign different importance or

weights to each individual model based on their performance

or credibility. The working of the Weighted Average model

can be described as follows:

Model Selection: We select a set of individual forecasting

models to include in the ensemble. These models can be

diverse in nature, such as ARIMA, exponential smoothing, or

machine learning algorithms.

Individual Model Training: We train each individual model

using historical time series data. The training process varies

depending on the specific modeling technique used for each

model. For example, ARIMA models require parameter

estimation, while machine learning models require training

using appropriate algorithms.

Individual Model Forecasting: We make predictions using

each trained individual model on the test dataset or future

time points of interest. Each model generates its own set of

forecasts based on its learned patterns and characteristics.

Weight Assignment: We assign weights to each individual

model based on their performance or credibility. The weights

can be determined using various methods, such as cross-

validation, error metrics, or expert judgment. The weights

should reflect the relative importance or reliability of each

model in the ensemble.

Ensemble Combination: We combine the individual forecasts

using weighted averages. For each time point, we multiply

the prediction from each model by its corresponding weight,

and then sum these weighted predictions to obtain the

ensemble forecast:

Forecast(t) = Σ (Weightₙ * Forecastₙ(t)) ………………...(23)

International Journal of Computer Sciences and Engineering Vol.11(1), Nov 2023

© 2023, IJCSE All Rights Reserved 19

where Forecast(t) is the ensemble forecast at time t, Weightₙ

is the weight assigned to the nth individual model, and

Forecastₙ(t) represents the forecast of the nth individual

model at time t.

Evaluation and Performance: We assess the performance of

the Weighted Average model using appropriate evaluation

metrics such as mean squared error (MSE), mean absolute

error (MAE), or root mean squared error (RMSE). We

compare the ensemble's performance with the individual

models and adjust the weights accordingly to optimize the

overall forecasting accuracy.

The Weighted Average model provides us with flexibility in

incorporating the strengths of individual models by assigning

different weights. It allows us to capture the diversity of the

ensemble members and adjust their contributions based on

their performance. By properly assigning weights, the

Weighted Average model can potentially enhance the overall

forecasting accuracy and robustness in capturing the

underlying patterns and trends in the time series data.

Weighted:

MAE: 30.59584069611674

MSE: 1497.569870700234

RMSE: 38.6984479107397

Fig 8.7 Weighted Average Prediction vs Actual on

 TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR

STACKING

The Stacking Ensemble model is an advanced ensemble

approach used for time series forecasting, which combines

the predictions from multiple individual models by training a

meta-model on their outputs. The working of the Stacking

Ensemble model can be described as follows:

Model Selection: The ensemble team selects a diverse set of

individual forecasting models to include in the ensemble.

These models can be different in nature, such as ARIMA,

exponential smoothing, neural networks, or random forests.

Training Phase:

a. Individual Model Training: Each team member trains their

assigned individual model using historical time series data.

The training process varies depending on the specific

modeling technique used for each model. For example,

ARIMA models require parameter estimation, while neural

networks require training using backpropagation.

b. Individual Model Forecasting: After training, each team

member generates predictions using their individual model on

the test dataset or future time points of interest. Each model

produces its own set of forecasts based on its learned patterns

and characteristics.

Meta-Model Training:

a. Ensemble Input: The ensemble team combines the

individual model forecasts into a matrix or a new feature set,

denoted as X_meta. Each row of X_meta represents a specific

time point, and each column corresponds to the prediction of

an individual model.

b. Ensemble Target: The ensemble team defines a target

variable, denoted as y_meta, which represents the true values

or the actual observations at each time point.

c. Meta-Model Training: The team trains a meta-model, such

as a linear regression or a neural network, using X_meta and

y_meta as the input and target variables, respectively. The

meta-model learns to capture the relationships between the

individual model predictions and the actual values, aiming to

make a more accurate forecast.

Ensemble Combination:

a. Individual Model Forecast Combination: Each team

member generates their own individual model forecast on the

test dataset or future time points.

b. Meta-Model Input: The ensemble team combines these

individual model forecasts into a matrix or feature set,

denoted as X_ensemble. Each row of X_ensemble

corresponds to a specific time point, and each column

represents the prediction of an individual model.

c. Meta-Model Forecast: The team uses the trained meta-

model to make the final ensemble forecast by providing

X_ensemble as input. The meta-model combines the

individual model predictions based on their learned

relationships to generate an ensemble forecast.

Evaluation and Performance: The ensemble team evaluates

the performance of the Stacking Ensemble model using

appropriate evaluation metrics such as mean squared error

(MSE), mean absolute error (MAE), or root mean squared

error (RMSE). They compare the ensemble's performance

with the individual models and assess the effectiveness of the

meta-model in improving forecasting accuracy.

The Stacking Ensemble model leverages the diverse

predictions of individual models by training a meta-model to

capture their relationships and generate a more accurate

ensemble forecast. By combining the strengths of different

models, the Stacking Ensemble model aims to improve

forecasting accuracy and capture the underlying patterns and

trends in the time series data.

Stacking:

MAE: 14.014427660820074

MSE: 282.12701948753875

RMSE: 16.79663714817757

International Journal of Computer Sciences and Engineering Vol.11(1), Nov 2023

© 2023, IJCSE All Rights Reserved 20

Fig 3.8 Stacking Prediction vs Actual on

 TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR

BAGGING

The Bagging Ensemble model is a powerful ensemble

approach utilized for time series forecasting, where multiple

individual models are trained on different subsets of the data

through bootstrapping and their predictions are combined to

make the final forecast. The working of the Bagging

Ensemble model can be described as follows:

Model Selection: The ensemble team selects a diverse set of

individual forecasting models to include in the ensemble.

These models can be of various types, such as ARIMA,

exponential smoothing, neural networks, or random forests.

Training Phase:

a. Bootstrapping: Each team member creates multiple

bootstrap samples by randomly selecting data points with

replacement from the original time series dataset. These

bootstrap samples are used to train different instances of the

individual models.

b. Individual Model Training: Each team member trains their

assigned individual model using the respective bootstrap

samples. The training process depends on the specific

modeling technique used for each model. For example,

ARIMA models require parameter estimation, while neural

networks involve training through backpropagation.

c. Individual Model Forecasting: After training, each team

member generates predictions using their individual model on

the test dataset or future time points of interest. Each model

produces its own set of forecasts based on its learned patterns

and characteristics.

Ensemble Combination:

a. Individual Model Forecast Combination: Each team

member generates their own individual model forecast on the

test dataset or future time points.

b. Ensemble Forecast: The ensemble team combines the

individual model forecasts by aggregating them, typically

using the average or majority voting scheme. This

aggregation helps to reduce the variability and biases present

in the individual models, resulting in a more robust and

accurate ensemble forecast.

Evaluation and Performance: The ensemble team evaluates

the performance of the Bagging Ensemble model using

appropriate evaluation metrics such as mean squared error

(MSE), mean absolute error (MAE), or root mean squared

error (RMSE). They compare the ensemble's performance

with the individual models and assess the effectiveness of the

bagging technique in improving forecasting accuracy.

The Bagging Ensemble model leverages the power of

multiple individual models trained on different subsets of data

to reduce overfitting and improve the overall forecasting

performance. By combining the predictions of diverse models

through bootstrap aggregation, the Bagging Ensemble model

enhances the accuracy and stability of time series forecasts.

Bagging:

MAE: 36.147939453125

MSE: 2430.859116809368

RMSE: 49.30374343606546

Fig 3.9 Bagging Prediction vs Actual on

 TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR

BOOSTING

The Boosting Ensemble model is a powerful ensemble

approach used for time series forecasting, where multiple

weak individual models are sequentially trained to correct the

errors of their predecessors and improve the overall forecast.

The working of the Boosting Ensemble model can be

described as follows:

Model Selection: The ensemble team selects a set of weak

individual models, often referred to as base learners, to

include in the ensemble. These base learners can be simple

models such as decision trees or linear regression models.

Training Phase:

a. Initial Model Training: The first base learner is trained on

the original time series data. This initial model may not

perform well, but it serves as a starting point for the boosting

process.

b. Sequential Model Training: Subsequent base learners are

trained in a sequential manner, with each model aiming to

correct the errors made by its predecessors. During training,

more emphasis is given to the data points that were

previously mispredicted, allowing the subsequent models to

focus on capturing the remaining patterns and improving

overall accuracy.

International Journal of Computer Sciences and Engineering Vol.11(1), Nov 2023

© 2023, IJCSE All Rights Reserved 21

c. Weighted Data Sampling: To emphasize the mispredicted

data points, the ensemble team assigns weights to each

observation in the training data. Initially, all weights are set to

equal values, but as the boosting process proceeds, the

weights are adjusted based on the errors made by the previous

models. This creates a feedback mechanism that prioritizes

the mispredicted data points in subsequent model training.

d. Model Weighting: After training each base learner, the

ensemble team assigns weights to the individual models

based on their performance. Models with lower errors are

given higher weights, indicating their relative importance in

the ensemble's final forecast.

Ensemble Combination:

a. Weighted Model Aggregation: The ensemble team

combines the predictions of individual models by taking a

weighted average of their forecasts. The weights assigned to

each model reflect their performance and contribution to the

overall ensemble forecast.

Evaluation and Performance: The ensemble team evaluates

the performance of the Boosting Ensemble model using

appropriate evaluation metrics such as mean squared error

(MSE), mean absolute error (MAE), or root mean squared

error (RMSE). They compare the ensemble's performance

with the individual models and assess the effectiveness of the

boosting technique in improving forecasting accuracy.

The Boosting Ensemble model leverages the sequential

training of weak base learners to iteratively correct errors and

improve forecasting accuracy. By assigning weights to

models and emphasizing mispredicted data points, the

Boosting Ensemble model focuses on capturing the remaining

patterns and improving overall performance. The iterative

nature of the boosting process allows the ensemble to adapt

and learn from previous mistakes, resulting in a powerful

forecasting model for time series data.

Boosting:

MAE: 36.147939453125

MSE: 2430.859116809368

RMSE: 49.30374343606546

Fig 3.10 Boosting Prediction vs Actual on

TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR

4. Experimental Method/Procedure/Design

4.1 Train - Test Split

There exist a multitude of models that can predict time series.

A plethora of forecasting strategies are at our disposal when it

comes to predicting sequences over continuous periods. Now,

for stock price prediction, any time series algorithm should be

adjusted to fit the models before being applied. Following the

manipulation of data, 80% of said information served as

training sets, with a further 20% being allocated to test sets in

order to cross-analyze predicted outcomes and actual results.

To compare the trained prediction, the forecast for the next 60

days was used.

4.2 Handling Missing Data

In order to proceed, it is essential that the information which

has been acquired maintains uniformity throughout. In

contrast to other time series, stock data has regular intervals

because, depending on the region, the market is closed on

weekends and major holidays. We have taken the first and

last dates of the series to obtain the date range in order to

accomplish that. The number of available dates and the

number of missing dates were then determined. It is most

advisable to complete any gaps in knowledge by seeking the

nearest corresponding data. Voids in information can be

addressed through identifying and utilizing its closest

approximation available. Optimal resolution of incomplete

facts requires strategic identification followed by subsequent

application of relevant close-fitting parallels for purposeful

synthesis towards fulfillment of informational requirements.

Numerous strategies can be utilized to verify the exactness

and fidelity of our amassed data. Given that Saturday's data

derives from the prior day, and Sunday utilizes information

drawn from the former row, this approach is optimal.

SARIMA

The Seasonal Autoregressive Integrated Moving Average

(SARIMA) model is a statistical model used to analyze and

forecast time series data with seasonal patterns. An extension

of the ARIMA model, it is being utilized for time series that

do not possess any seasonal attributes.

The SARIMA framework considers the cyclical characteristic

of a chronology, that is, the repeated arrangement which

occurs over constant period spans such as days or weeks. It

does this by incorporating additional terms in the ARIMA

model to capture the seasonal behavior of the data.

The SARIMA model is defined by three parameters: p, d, and

q, which correspond to non-seasonal autoregressive order,

differencing order, and moving average order, respectively. It

also has three additional seasonal parameters: P, D, and Q,

which correspond to seasonal autoregressive order, seasonal

differencing order, and seasonal moving average order,

respectively. The parameters represent the number of time

periods in a season.

In order to implement a SARIMA model for time series

analysis, estimation of its parameters is carried out via the

International Journal of Computer Sciences and Engineering Vol.11(1), Nov 2023

© 2023, IJCSE All Rights Reserved 22

maximum likelihood method. The goal entails identifying

optimal parameter values that are most likely to result in

observing data conforming with the prescribed model

specifications. The model is then used to forecast future

values of the time series.

Stationarity vs Seasonality

Stationarity and seasonality are two important concepts in

time series analysis that describe different aspects of the data.

Stationarity refers to the statistical properties of the time

series remaining constant over time. Put simply, the statistical

parameters of average, deviation and correlation should

remain stable across time. In the realm of statistical analysis,

a time series that remains consistent with its own set of data-

driven properties over an extended period can be classified as

stationary. This classification applies irrespective of any

specific interval under scrutiny during one's inspection and

evaluation process. The concept of stationarity holds great

significance in time series analysis as it enables us to

formulate more precise prognoses and estimates about the

collected data.

In contrast, the concept of seasonality refers to recurrent

oscillations within a time series that occur at fixed junctures.

One may attribute this occurrence to variables outside of

oneself, such as alterations in atmospheric conditions or

customary occasions. One potential method for identifying

seasonal patterns involves scrutinizing the autocorrelation

function (ACF) of a given temporal sequence. This technique

involves computing correlations between sequential

observations in time series data and helps identify patterns

that repeat themselves over fixed intervals. This methodology

allows for measurement of correlation across dissimilar lags

in observed data sets.

One salient point of divergence that distinguishes stationarity

from seasonality is the former's proclivity toward rendering

unchanging overall statistical properties over time, in contrast

to the latter which encompasses cyclic patterns exhibiting

regularity. A time series can be stationary with or without

seasonality. Should the time series be unable to maintain a

stationary state, there arises an inherent complexity in

producing precise predictions concerning its data due to

fluctuating statistical properties over distinct periods of time.

Dickey-Fuller Test

The statistical assessment known as the Dickey-Fuller test is

used to gauge whether or not a given time series possesses

stationarity. In the context of building a Seasonal

Autoregressive Integrated Moving Average (SARIMA)

model, it is important to ensure that the time series being

analyzed is stationary. This is because SARIMA models are

designed to work with stationary time series data.

If the Dickey-Fuller test indicates that the time series is not

stationary, then differencing can be used to transform the data

into a stationary series. The process of differencing entails the

subtraction operation between each value present in a time

series and its predecessor. The recursive nature of this

technique allows one to continue said operation until

stationarity is achieved within the aforementioned time series.

Once the data has been differenced and made stationary, it

can be used as input to the SARIMA model.

LSTM

Long Short-Term Memory (LSTM) is a type of Recurrent

Neural Network (RNN) architecture that is designed to

overcome the limitations of traditional RNNs in processing

and remembering long-term dependencies in sequential data.

This is particularly applicable when handling complex

sequences and retaining information for prolonged durations.

The LSTM model includes a special type of cell that can

selectively remember or forget information over time,

allowing it to effectively handle long-term dependencies in

the data. Within the confines of a cellular structure, three

gates preside over and regulate the dissemination of data:

namely, an intake gate that receives information from various

external stimuli; furthermore, a forgetful gateway which

purges previous informational inputs as necessary while

simultaneously retaining pertinent facts to prevent repetition.

Last but not least is an output portal rather crucial for

transmitting refined signals onto specific cells within its

vicinity.

The gate responsible for deciphering the amount of fresh data

to be incorporated into the existing cell state is dubbed as

input. Forget, on its part, presides over just how much

information from past states should hit the road while output

paves the way for deciding which current cellular details are

pertinent enough to proceed forth onto succeeding time steps.

The LSTM model learns the optimal values for the gate

weights and biases through training on a labeled dataset using

backpropagation through time. The data fed into the LSTM

consists of a sequence of discrete units, and its output

comprises an arrangement of forecasts.

GRU

A structural blueprint belonging to the broader family of

recurrent neural network (RNN) facets is that of the Gated

Recurrent Unit (GRU). With a focus on analytical capabilities

in sequential data processing, including those which are

temporal-based or otherwise expressed through linguistics

and enunciation. This model bears a resemblance to the

LSTM technique, although it boasts fewer digits and

operations involved in its computations. That being said, it is

more economical computationally than the latter.

The GRU model includes a gating mechanism that allows it

to selectively learn and remember important information

while ignoring irrelevant information. The mechanism that

controls access is constructed with two types of gates: the

gateway to reset and a gateway for updating.

The amount of the past hidden state to be disregarded is

determined by the reset gate, while how much of the recent

input should supplement and update with the current hidden

state is decided based on what’s known as an update gate.

International Journal of Computer Sciences and Engineering Vol.11(1), Nov 2023

© 2023, IJCSE All Rights Reserved 23

This gating mechanism enables the GRU to learn long-term

dependencies in the input sequence, similar to the LSTM

model.

The GRU model is trained using backpropagation through

time, where the weights and biases are updated using gradient

descent to minimize the error between the predicted and

actual outputs. The GRU is the recipient of a series of data

points, and in turn it outputs a sequence of predictions.

Prophet

Prophet is a time series forecasting model developed by

Facebook's Core Data Science team. It is an open-source

model designed to handle time series data with seasonality,

holidays, and other recurring patterns. Prophet is based on an

additive model, where non-linear trends are fit with yearly,

weekly, and daily seasonality, plus holiday effects.

Prophet uses a decomposable time series model with three

main components: trend, seasonality, and holidays. The

element that signifies deviations from a repeating pattern in

the data over time is denoted by the trend component. As for

periodic transformations within the data such as daily, weekly

or annual patterns can be traced through seasonality

components. The holiday component captures the effect of

holidays or other special events on the data.

Prophet uses a Bayesian approach to model fitting, where it

estimates the parameters of the model and generates posterior

distributions for the forecasts. Within the model, one can

manipulate a variety of hyperparameters to fine-tune its

aptitude for detecting alterations in trends and seasonality

alongside other elements.

Prophet has several advantages over traditional time series

models such as ARIMA or exponential smoothing. It is

highly customizable and can handle missing data, changes in

trend, and outliers. It also provides uncertainty estimates for

the forecasts, which can be useful for decision-making.

Kalman Filter

The Kalman Filter is a recursive algorithm used for time

series forecasting and state estimation. It operates by

estimating the state of a system based on a sequence of

observations. The working of the Kalman Filter can be

summarized as follows:

State Initialization: The Kalman Filter begins by initializing

the state of the system at the starting time point. This initial

state can include variables such as position, velocity, or any

other relevant parameters depending on the specific

application.

Prediction Step: In the prediction step, the Kalman Filter

predicts the state of the system at the next time point based on

the previous state and the underlying system dynamics. It

uses a set of transition equations to propagate the state

forward in time, taking into account any known or assumed

dynamics of the system.

Measurement Update Step: After making the prediction, the

Kalman Filter incorporates the measurement information

obtained at the current time point. It compares the predicted

state with the actual measurement to calculate the

measurement residual, which represents the difference

between the predicted and observed values.

State Update Step: In the state update step, the Kalman Filter

adjusts the predicted state based on the measurement residual

and the measurement noise covariance. It calculates the

Kalman Gain, which determines the optimal weighting

between the predicted state and the measurement information.

The Kalman Gain is adjusted based on the uncertainties

associated with the predicted state and the measurement

accuracy.

Recursive Process: The Kalman Filter repeats the prediction,

measurement update, and state update steps for each

subsequent time point, continually refining the state estimate

based on the observed measurements. The filter maintains

and updates estimates of the system's state and its associated

uncertainty as new data becomes available.

Forecasting and Smoothing: In addition to state estimation,

the Kalman Filter can also be used for forecasting future

observations and smoothing past observations. By leveraging

the estimated state and its associated uncertainty, the Kalman

Filter provides a means to generate forecasts and obtain a

more accurate representation of the underlying time series.

The Kalman Filter is particularly useful when dealing with

noisy or incomplete data, as it combines past observations

with system dynamics to generate more accurate predictions.

Its recursive nature allows it to adapt and adjust its estimates

as new measurements become available, making it an

effective tool for time series forecasting and state estimation

in various fields, including finance, engineering, and signal

processing.

Ensemble Models

Average

An average ensemble model is a type of time series

forecasting model that combines the forecasts of multiple

models to improve the accuracy of predictions. In an average

ensemble model, several individual models are trained on the

same dataset using different algorithms or hyperparameters.

The forecasts generated by each model are then averaged to

produce a final prediction. By implementing this technique,

one can effectively mitigate the negative effects caused by

model inaccuracies and ultimately enhance the precision of

prognostication. The potential efficacy of a standard

ensemble model hinges upon the assortment and quality of

each model utilized in said collection. The average ensemble

model is a popular and effective approach in time series

forecasting, particularly in situations where no single model

is consistently accurate.

Weighted Average

In a weighted average ensemble model, several individual

models are trained on the same dataset using different

International Journal of Computer Sciences and Engineering Vol.11(1), Nov 2023

© 2023, IJCSE All Rights Reserved 24

algorithms or hyperparameters. Following the generation of

predictions using individual models, a composite prediction is

formed through the averaging of weightage. The procedure

for determining these weights involves evaluating the

aptitude of each model against information derived from

validation sets. The strategy at play here emphasizes the

superiority of models that exhibit exemplary performance on

the validation dataset, whilst de-emphasizing those with a

subpar showing. The weighted average ensemble model can

help to further reduce the impact of individual model errors

and improve the overall accuracy of the forecast.

Nonetheless, similar to the common ensemble model at hand,

the efficacy of this weighted average ensemble is reliant on

both the divergence and caliber of its individual models.

Stacking

Instead of simply averaging the forecasts, the stacking

ensemble model uses a meta-model to learn how to combine

the forecasts of the individual models. The meta-model takes

the forecasts generated by the individual models as inputs and

learns to make a final prediction based on the patterns

observed in the input forecasts. This approach can help to

capture more complex relationships between the forecasts and

improve the overall accuracy of the forecast. The stacking

ensemble's efficacy hinges on the caliber of constituent

models within the assemblage and the appropriate selection of

meta-models along with their hyperparameters. One cannot

discount these factors if they aspire to yield a well-

performing model for prediction purposes.

Bagging

In a bagging ensemble model, several individual models are

trained on bootstrap samples of the original dataset, where

each bootstrap sample is a random subset of the original data.

The forecasts generated by each model are then combined

using an average, where each model's forecast is weighted

equally. Through the utilization of this strategy, one may

potentially diminish the consequences arising from any

flawed model performances and consequently enhance

holistic precision within predictions. Bagging is particularly

useful for unstable or sensitive models, as it can help to

reduce the variance of the models and improve their stability.

However, the effectiveness of the bagging ensemble model

depends on the diversity and quality of the individual models

used in the ensemble.

Boosting

In a boosting ensemble model, individual models are trained

sequentially, where each subsequent model is trained to

correct the errors of the previous model. Subsequent to the

production of projections by individual models, a weighted

mean is computed. The weight assigned to each model's

projection in this average assessment corresponds with its

efficacy when tested against training data. The strategy

employed has the potential to enhance precision in predicting

future events through an ongoing process, especially

benefiting inadequate models. The success of the boosting

ensemble technique is contingent upon both the caliber of its

individual models and variables like selection methods,

frequency of iterations and weight function choice.

5. Results and Discussion

We performed predictions on multiple datasets, all relevant to

the stock market and referring to different share prices of

different multinational conglomerates. Upon conclusion of

prediction using all the models, the following results were

observed:

Fig 5.1 All Prediction vs Actual on

DIS - The Walt Disney Company - NYSE - USA USD

Fig 5.2 All Prediction vs Actual on

AAF.L - Airtel Africa Plc - LSE - UK GBP

Fig 5.3 All Prediction vs Actual on

AAPL - Apple Inc - NasdaqGS - USA USD

International Journal of Computer Sciences and Engineering Vol.11(1), Nov 2023

© 2023, IJCSE All Rights Reserved 25

Fig 5.4 All Prediction vs Actual on

600519.SS - Kweichow Moutai Co., Ltd. - SSE - Shanghai CNY

Fig 5.5 All Prediction vs Actual on

1398.HK - Industrial and Commercial Bank of China Limited - HKE -

Honkong HKD

Fig 5.6 All Prediction vs Actual on

TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR

Fig 5.7 All Prediction vs Actual on

TATAMOTORS.NS - Tata Motors - NSE - India INR

Fig 5.8 All Prediction vs Actual on

RY.TO - Royal Bank of Canada - TSX - Toronto CAD

Fig 5.9 All Prediction vs Actual on

300750.SZ - Contemporary Amperex Technology Co., Limited - Shenzhen

CNY

Fig 12.10 All Prediction vs Actual on

6758.T - Sony Group Corporation - TSE - Tokyo JPY

Upon conducting tests on multiple tickers, the Stacking

Ensemble model emerged as the most effective among the

mentioned models. This superiority can be attributed to

several key factors:

1. Leveraging Model Diversity: The Stacking Ensemble

model harnesses the power of diverse individual models by

combining their predictions. By including a variety of

forecasting techniques, such as ARIMA, LSTM, and Prophet,

the ensemble captures a wider range of patterns and

relationships in the time series data. This model diversity

helps mitigate the limitations of individual models and

enhances the overall forecasting accuracy.

International Journal of Computer Sciences and Engineering Vol.11(1), Nov 2023

© 2023, IJCSE All Rights Reserved 26

2. Meta-Model Learning: The Stacking Ensemble model

incorporates a meta-model that learns from the predictions of

the individual models. Through training on the combined

forecasts, the meta-model can identify and exploit

complementary strengths among the individual models. It can

effectively weigh and adjust the contributions of each model

based on their respective performance and patterns captured,

resulting in a more accurate ensemble forecast.

3. Handling Complex Patterns: Time series data often exhibit

complex patterns, such as trend, seasonality, and irregular

fluctuations. The Stacking Ensemble model's combination of

diverse models and meta-model allows for a more

comprehensive representation and understanding of these

patterns. The ensemble can capture long-term trends with

models like ARIMA, capture short-term dependencies with

models like LSTM, and incorporate seasonal components

with models like Prophet. By blending these models, the

ensemble can better handle the various complexities present

in the data, leading to improved forecasting performance.

4. Model Optimization: The Stacking Ensemble model

provides an opportunity for further optimization through the

selection and tuning of individual models and the meta-

model. Each individual model can be fine-tuned to extract the

best possible forecasts, and the meta-model's parameters can

be optimized to enhance the ensemble's performance. This

flexibility in model selection and tuning allows the Stacking

Ensemble to adapt to different time series characteristics and

achieve superior forecasting accuracy.

5. Mitigating Model Biases: Individual forecasting models

may have inherent biases or limitations that affect their

accuracy. However, by combining multiple models in the

Stacking Ensemble, these biases can be minimized or even

eliminated. The ensemble's aggregation of diverse models

helps to average out individual model errors, reducing the

impact of specific biases and enhancing the overall robustness

of the forecast.

Overall, the Stacking Ensemble model's ability to leverage

model diversity, meta-model learning, and optimized

combination of forecasts allows it to outperform other models

in terms of forecasting accuracy. Its capability to handle

complex patterns, mitigate biases, and adapt to different time

series characteristics makes it a powerful and reliable choice

for time series forecasting across multiple tickers.

6. Conclusion and Future Scope

In conclusion, our research paper aimed to compare the

effectiveness of various time series forecasting models on

multiple tickers. Through rigorous testing and analysis, we

found that the Stacking Ensemble model emerged as the most

efficient and accurate forecasting approach. The success of

the Stacking Ensemble model can be attributed to its ability to

leverage model diversity, meta-model learning, and optimized

combination of forecasts.

By incorporating a diverse set of individual models, such as

ARIMA, LSTM, and Prophet, the Stacking Ensemble model

captures a wide range of patterns and relationships present in

the time series data. This model diversity enables the

ensemble to overcome the limitations of individual models

and better handle complex patterns like trend, seasonality,

and irregular fluctuations. The ensemble's meta-model

learning further enhances its forecasting accuracy by

effectively weighing and adjusting the contributions of each

individual model based on their respective performance and

captured patterns.

Additionally, the Stacking Ensemble model demonstrated its

adaptability and flexibility by allowing the inclusion of new

models or modifications to existing ones. This adaptability

ensures that the ensemble can continually evolve and improve

its forecasting performance as new models or techniques

become available.

Moreover, the Stacking Ensemble model's ability to mitigate

biases and select the most accurate models through its

training process provides a valuable advantage. By averaging

out individual model errors and automatically selecting the

best models, the ensemble enhances the robustness and

reliability of its forecasts.

Our research findings strongly support the superiority of the

Stacking Ensemble model in time series forecasting across

multiple tickers. Its ability to leverage model diversity, meta-

model learning, and optimized combination of forecasts sets

it apart from other models examined in our study. The

Stacking Ensemble model's capacity to handle complex

patterns, adapt to different data characteristics, and

incorporate new models ensures its relevance and

effectiveness in a variety of forecasting scenarios.

The Stacking Ensemble model represents a powerful

forecasting approach that outperforms other models by

capturing the strengths of individual models, mitigating their

limitations, and producing highly accurate and reliable

forecasts. As such, it holds great potential for practitioners

and researchers seeking superior time series forecasting

results in financial markets and beyond.

Data Availability

The data used in this research paper was obtained from

publicly available sources, ensuring transparency and

accessibility. The authors adhered to ethical guidelines and

followed appropriate data usage policies. The dataset

primarily consisted of historical stock price data, which is

widely accessible to the public for research purposes.

To uphold strict standards of data integrity and enable future

duplication of results, the precise digital repositories and

technological frameworks exploited to garner the information

presented herein have been explicitly denoted, encompassing

an equivalent quantity of vocabulary. The authors confirm

that all necessary permissions and legal requirements were

fulfilled while accessing and utilizing the data.

International Journal of Computer Sciences and Engineering Vol.11(1), Nov 2023

© 2023, IJCSE All Rights Reserved 27

Conflict of Interest

The researchers herein proclaim, devoid of monetary gain or

prejudice, impartiality towards the dissemination of this

scholarly work. Having been executed with the utmost

methodological meticulousness devoid of any extraneous

persuasions or prepossessions that could conceivably

undermine the veracity of the conclusions, the investigation

was carried out. Having neither organizational ties nor

financial stakes susceptible to swaying the findings or

exegesis of their work, the writers stand unaffiliated.

In order to uphold the crucial transparency and strict

adherence to ethical principles to which the authors

steadfastly aspire. To contribute substantively to the domain

of chronological data prognostication regarding equity

valuation surmises, an analytical methodology was

systematically implemented whilst upholding an impartial

perspective reinforced through scrutinizing the aggregated

information.

Though meticulously screened and ethically declared

pursuant to the rigorous strictures of academic integrity to

abate any semblance of improper influence, whether

pecuniary or intimate, that may have surreptitiously tainted

the inquiry or skewed its conclusions remain undisclosed.

With steadfast dedication to scientific rigor and objectivity in

pursuing and conveying their work, the researchers have

taken pains to guarantee the validity and dependability of the

conclusions elucidated within this manuscript.

Authors’ Contributions

The authors of this manuscript have worked collaboratively

and shared the workload equally in conducting the research

and preparing the manuscript. The contribution of each author

is described below:

Mehul Kundu: Conducted statistical analysis, including the

application of forecasting models and data interpretation. I

aided in formulating an intricate research methodology and

then meticulously scrutinized and overhauled the academic

manuscript.

Arpan Bose: Played a key role in the conceptualization and

design of the study. Contributed to data acquisition, analysis,

and interpretation. Drafted sections of the manuscript and

provided critical revisions.

Debasmita Guha: Conducted an extensive literature review,

synthesized previous research, and contributed to the

theoretical framework. Provided valuable insights and

contributed to the writing and editing process.

Aftab Alam: Contributed to data collection, preprocessing,

and analysis. With diligent work assisting in unraveling the

implications and ramifications of the findings, and by

providing substantive input throughout the exhaustive

drafting and revising process of the scholarly work,

significant contributions were made.

Romit Das: Played a crucial role in data visualization and

presentation. Assisted in the revision of the manuscript,

ensuring clarity and coherence of the content. Provided

valuable feedback and insights throughout the research

process.

All authors actively participated in regular meetings and

discussions, sharing their expertise and perspectives. Taking

shared ownership over the precision and veracity of the

assembled information, with its myriad details and

conclusions as a coherent whole, the group jointly perused

and sanctioned the completed draft of the written work.

The authors would like to acknowledge and emphasize the

equal contribution and collaboration among all authors

throughout the research process. The combined perseverance

of the contributors has immensely enhanced the scientific

rigor and coherence of the findings delineated herein.

Having scrutinized and endorsed in unanimity the ultimate

incarnation of this composition, we avow our collective

liability for the concepts articulated herein.

Acknowledgements

The analysis of the project work wishes to express our

gratitude to Apurba Paul for allowing the degree attitude and

providing effective guidance in development of this project

work. His conscription of the topic and all the helpful hints he

provided contributed greatly to the successful development of

this work without being pedagogic and having an overbearing

influence.

We also express our sincere gratitude to Dr. Bikramjit Sarkar,

Head of the Department of Computer Science and

Engineering of JIS College of Engineering and all the

respected faculty members of Department of CSE for giving

the scope of successfully carrying out the project work.

Finally, we take this opportunity to thank Prof. (Dr.) Partha

Sarkar, Principal of JIS College of Engineering for giving us

the scope of carrying out the project work.

References

[1]. Zhang, G.P. "Time series forecasting using a hybrid ARIMA and

neural network model" Neurocomputing, Vol.50, pp.159-175,

2003. http://doi.org/10.1016/S0925-2312(01)00702-0

[2]. Nikolas Topaloglou, Hercules Vladimirou, Stavros A. Zenios,

"Integrated dynamic models for hedging international portfolio

risks", European Journal of Operational Research, Vol.285,

Issue.1, pp.48-65, 2019. http://doi.org/10.1016/j.ejor.2019.01.027

[3]. Taylor, Sean J. and Letham, Benjamin, “Forecasting at Scale“, The

American Statistician, Vol.72, pp.37-45, 2018.

http://doi.org/10.1080/00031305.2017.1380080

[4]. Chatfield, Chris, “The Analysis of Time Series: An Introduction”,

Sixth Edition, Taylor & Francis, Chapman and Hall/CRC, United

States of America, 2003, ISBN – 9781584883173

[5]. Xiao, Daiyou; Su, Jinxia, “Research on Stock Price Time Series

Prediction Based on Deep Learning and Autoregressive Integrated

Moving Average”, Scientific Programming, Vol.2022, 2022,

Article ID 4758698, 12 pages,

https://doi.org/10.1155/2022/4758698

http://doi.org/10.1016/S0925-2312(01)00702-0
http://doi.org/10.1016/j.ejor.2019.01.027
https://www.tandfonline.com/doi/full/10.1080/00031305.2017.1380080
https://doi.org/10.1155/2022/4758698

International Journal of Computer Sciences and Engineering Vol.11(1), Nov 2023

© 2023, IJCSE All Rights Reserved 28

[6]. Cai J, Zhang K, Jiang H, “Power Quality Disturbance

Classification Based on Parallel Fusion of CNN and GRU”,

Energies, Vol.16, Issue.10, pp.4029, 2023,

https://doi.org/10.3390/en16104029

[7]. Wu, Hao; Zhou, Bing; Zhou, Haoru; Zhang, Pengyu; Wang, Meili,

"Be-1DCNN: a neural network model for chromatin loop

prediction based on bagging ensemble learning", Briefings in

Functional Genomics, pp.2041-2657, 2023,

https://doi.org/10.1093/bfgp/elad015

[8]. Padhi, D.K., Padhy, N., “Prognosticate of the financial market

utilizing ensemble-based conglomerate model with technical

indicators”, Evol. Intel, Vol.14, pp.1035–1051, 2021,

https://doi.org/10.1007/s12065-020-00528-z

[9]. Nti, I.K., Adekoya, A.F. & Weyori, B.A, “A comprehensive

evaluation of ensemble learning for stock-market prediction”,

Journal of Big Data, Vol.7, Issue.20, 2020,

https://doi.org/10.1186/s40537-020-00299-5

[10]. [10] F. A. Gers, J. Schmidhuber and F. Cummins, "Learning to

Forget: Continual Prediction with LSTM," Neural Computation,

Vol.12, Issue.10, pp.2451-2471, 2000.

http:/doi.org/10.1162/089976600300015015

AUTHORS PROFILE

Mehul Kundu earned his B. Tech. in

Computer Science and Engineering from

JIS College of Engineering in 2023. He is

currently working as a Product Designer

in Merlin by Foyer, an AI company. He

was a member of CSI Students Chapter

from 2020 to 2021. He owns 2 patents

under him in the field of IoT and

Sanitation products.

Arpan Bose earned his B. Tech. in

Computer Science and Engineering from

JIS College of Engineering in 2023. He is

currently pursuing a Masters in

Management.

Debasmita Guha earned her B. Tech in

Computer Science and Engineering from

JIS College of Engineering in 2023. She

has a patient in the field of sanitation

products and is currently pursuing M.

Tech in Cyber Security.

Aftab Alam holds a B. Tech. degree in

Computer Science and Engineering from

JIS College of Engineering (2023). He is

an experienced Technical Writer with

over 2 years of industry experience. He

has a patent in the field of sanitation and

is currently freelancing as a Technical

Writer.

Romit Das earned his B. Tech. in

Computer Science and Engineering from

JIS College of Engineering in 2023. He is

currently working as an intern in Pursuit

Software company .

https://doi.org/10.3390/en16104029
https://doi.org/10.1093/bfgp/elad015
https://doi.org/10.1007/s12065-020-00528-z
https://doi.org/10.1186/s40537-020-00299-5
http://doi.org/10.1162/089976600300015015

