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Abstract: Gauging the pulse of political climes and global tides alike, the stock exchange carries considerable consequence. 

Given the capricious manner by which the apparatus maneuvers, present technological means and trade tenets forbid accurately 

foretelling how planetary perturbations may sway share values over extended time. Of late, nonetheless, informatic techniques 

and artificially adroit algorithms have enabled scrutinizing episodes and occurrences that surface symbiotically, prognosticating 

the trajectory of equity prices for most, if not all, corporations in qualifying bourses. 

Past the fluctuating cultural zeitgeists and mercantile vicissitudes defining our epoch's global political topography, 

prognosticating distant futures proves an elusive enterprise. 

Our objective henceforth shall be to prognosticate the quotidian inclination of equity premiums in the stock bazaar with the 

utmost precision achievable. The Stacking Ensemble model is a prevalent and trustworthy fashion to anticipate chronological 

successions. We shall explain why we opt for it over and above the other techniques adduced, akin to Meta Prophet, and the 

LSTM modus operandi, posterior to assaying. We manipulate a combination exemplar to ascertain the weighted norm of all in-

sample data. In this exploration, we endeavored to disparate things with the stock valuations of multiple shareholding fully 

remunerated ordinary portions and thereafter effectuated predictions about stock valuations. 
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1. Introduction  
 

1.1 Time Series 

A grouping of data points that are compiled in a sequential 

manner is commonly known as a time series. Information that 

has been collected and documented progressively, often 

labeled as time series data, possesses the capability to be 

employed in detecting inclinations or designs of conduct. 

 

The four components of a time series are: 

Level: This is the baseline or average value of the series. It 

represents the expected value of the series over time, without 

any upward or downward trends or seasonal fluctuations. 

 

Trend: This component refers to the long-term direction of 

the series. The depiction pertains to the all-encompassing 

formation of a sequence throughout an extensive duration, 

akin to either an upward or downward inclination. 

 

Seasonality: The facet of seasonality denotes the reoccurring, 

cyclical oscillations present in the series over a predetermined 

time frame including but not limited to days, weeks or 

months. The fluctuation in regularity, known as seasonality, 

can be influenced by multiple determinants consisting of 

distinct weather patterns, holiday seasons or customary 

occasions. 

 

Noise: This component refers to random fluctuations or 

irregularities in the series that cannot be explained by the 

other components. This denotes the indeterminate aberration 

in a sequence caused by fortuitous occurrences, inaccuracies 

in measurement, or other instigating circumstances. 

It's important to note that trend and seasonality components 

are optional since series can be stationary. 

 

2. Related Work  
 

ARIMA (Autoregressive Integrated Moving Average): 

ARIMA models have been extensively studied and applied in 

various fields, particularly in time series forecasting. The 

literature on ARIMA models spans several decades and 

covers a wide range of topics, including model development, 

estimation techniques, diagnostic tools, and practical 

applications. 

 

One of the foundational works in ARIMA modeling is the 

classic paper by Box and Jenkins (1970), titled "Time Series 

Analysis: Forecasting and Control," where they introduced 

the concept of ARIMA models and presented the Box-Jenkins 

methodology for model identification, estimation, and 

diagnostic checking. 

 

Since then, numerous researchers have made significant 

contributions to the ARIMA literature. For example, 

Hamilton (1994) in his book "Time Series Analysis" provides 

a comprehensive treatment of ARIMA models, including 

model selection, estimation, and inference. 
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GRUs were proposed by Kyunghyun Cho, et al., in 2014 as 

an alternative to LSTMs. GRUs simplify the LSTM 

architecture, having two gates (update and reset) compared to 

the LSTM's three gates.  

 

Cho, K., et al. (2014). "On the Properties of Neural Machine 

Translation: Encoder-Decoder Approaches." This paper 

introduced GRUs and discussed their use in machine 

translation tasks. 

 

Chung, J., et al. (2014). "Empirical Evaluation of Gated 

Recurrent Neural Networks on Sequence Modeling." This 

paper offers empirical evaluations of GRUs in sequence 

modeling tasks. 

 

LSTMs, introduced by Hochreiter and Schmidhuber in 1997, 

are a type of recurrent neural network (RNN) designed to 

avoid the problem of vanishing gradients. They use a cell 

state and three gates (input, forget, and output) to control the 

flow of information. 

 

Hochreiter, S., & Schmidhuber, J. (1997). "Long Short-Term 

Memory." This is the seminal paper that introduced LSTMs. 

 

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). 

"Learning to Forget: Continual Prediction with LSTM." This 

paper introduced the concept of the forget gate in LSTMs. 

 

The Kalman filter, introduced by Rudolf E. Kálmán in 1960, 

is an algorithm that uses a series of measurements observed 

over time and produces estimates of unknown variables by 

estimating a joint probability distribution over the variables 

for each timeframe. 

 

Kalman, R. E. (1960). "A New Approach to Linear Filtering 

and Prediction Problems." This is the original paper 

introducing the Kalman filter. 
 

Maybeck, P. S. (1979). "Stochastic Models, Estimation, and 

Control, Volume 1." This book provides a comprehensive 

understanding of the Kalman filter and its applications. 

 

3. Theory/Calculation 

 

Since the market is typically closed on weekends and major 

holidays depending on the region, stock data (if considered 

daily) has regular intervals in it unlike any other time series. 

Therefore, we must ensure consistency before making any 

predictions using stock data.  Predictions can only be made 

with confidence when all variables are consistent. 

 

However, the key to success is to identify reliable and 

relevant information and to make informed decisions based 

on the research and analysis. Forecasting stock performance 

can be a challenging task, but it is essential in order to make 

informed investment decisions. 

 

Finding the missing data 

In order to determine the date range, we started by taking the 

first and last dates in the series. Afterward, discover how 

many dates are present and how many are absent. (It will 

change depending on the stock and region.) 

 

Filling in the missing data 

One frequently encounters the interpolate() function within 

data analysis libraries such as Pandas or NumPy, which is a 

pre-existing mode of operation. It serves to fill gaps or 

missing time series values, making it extremely useful for this 

purpose. In order to approximate the absent data in a series 

over time, diverse techniques for interpolation like 

polynomial, cubic and linear are utilized within this function. 

By relying on known values present in the given set of 

information points, these methods provide estimates that 

bridge any gaps or missing pieces found therein. The function 

can therefore be used on time series data - both regular and 

irregular. Selecting parameters for the interpolation method is 

largely dependent upon the data's unique characteristics. It 

became possible for us to realize a more comprehensive 

dataset by virtue of the function called .interpolate(). In so 

doing, we managed to infill our time series with missing data 

hence enabling us to generate plausible predictions using our 

forecasting models. The effectiveness of the approximation 

technique hinges on several factors, notably the preferred 

interpolation approach, the frequency and design of 

incomplete entries, as well as idiosyncrasies within temporal 

data records. 

 

The working of the interpolation function can be summarized 

as follows: 

Identify Missing Data: The first step is to identify the missing 

data points in the time series dataset. These are typically 

denoted by NaN (Not a Number) or any other designated 

missing value indicator. 

 

Select Interpolation Method: Next, an appropriate 

interpolation method is chosen based on the characteristics of 

the data and the specific requirements of the analysis. 

Common interpolation methods include linear interpolation, 

polynomial interpolation, spline interpolation, and nearest 

neighbor interpolation. Each method has its own assumptions 

and mathematical algorithms for estimating missing values. 

 

Determine Interpolation Window: The interpolation window 

refers to the range of adjacent data points used to estimate the 

missing value. It can vary based on the specific interpolation 

method and the nature of the time series data. For instance, 

linear interpolation uses the two nearest observed data points 

on either side of the missing value to estimate its value. 

 

Perform Interpolation: The interpolation function applies the 

selected interpolation method within the interpolation 

window to estimate the missing values. The algorithm uses 

mathematical calculations, such as linear equations, 

polynomial equations, or spline functions, to determine the 

estimated values based on the neighboring observed data 

points. 

 

Replace Missing Values: Once the missing values are 

estimated through interpolation, they are substituted in the 

time series dataset, replacing the original missing value 
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indicators. This process fills in the gaps in the time series 

data, ensuring a continuous and complete dataset. 

 

Assess Interpolation Accuracy: It is important to evaluate the 

accuracy and reliability of the interpolated values. This can be 

done by comparing the interpolated values to any available 

ground truth or by assessing the overall consistency and 

smoothness of the filled-in time series. It is crucial to 

consider the limitations and assumptions of the chosen 

interpolation method and the impact it may have on the 

accuracy of the interpolated values. 

 

By utilizing the interpolation function, missing data points in 

a time series can be estimated and filled in, enabling a more 

complete and continuous dataset for further analysis and 

forecasting. It provides a practical and efficient approach to 

handle missing values in time series data and ensures that the 

resulting dataset maintains the temporal order and integrity 

required for meaningful analysis and decision-making. 

AUTO SARIMA 

 

ARIMA 

The ARIMA model is a widely used time series forecasting 

model that combines autoregression (AR), differencing (I), 

and moving average (MA) components. It is effective in 

capturing both short-term and long-term patterns in the data. 

The ARIMA model is denoted as ARIMA(p, d, q), where: 

 

p represents the order of the autoregressive component, which 

captures the linear relationship between the current value and 

previous values of the time series. 

 

d represents the order of differencing, which is the number of 

times the time series needs to be differenced to achieve 

stationarity. 

 

q represents the order of the moving average component, 

which captures the relationship between the error terms and 

the lagged values of the time series. 

 

The general equation for an ARIMA(p, d, q) model can be 

written as: 

 

Y_t = c + Φ₁Y_(t-1) + Φ₂Y_(t-2) + ... + Φ_pY_(t-p) + θ₁ε_(t-

1) + θ₂ε_(t-2) + ... + θ_qε_(t-q) + ε_t      …………...(1) 

 

where: 

 

Y_t is the value of the time series at time t. 

c is a constant term. 

Φ₁, Φ₂, ..., Φ_p are the autoregressive coefficients. 

θ₁, θ₂, ..., θ_q are the moving average coefficients. 

ε_t is the error term at time t. 

ARIMA models are primarily used for univariate time series 

forecasting, where only the historical values of a single 

variable are considered. 

 

SARIMA (Seasonal ARIMA) 

The SARIMA model extends the ARIMA model by 

incorporating the seasonal component. It is suitable for time 

series data that exhibit seasonality, where patterns repeat at 

regular intervals. 

 

The SARIMA model is denoted as SARIMA(p, d, q)(P, D, Q, 

s), where: 

 

(p, d, q) represents the non-seasonal order of the AR, I, and 

MA components, respectively. 

(P, D, Q, s) represents the seasonal order of the AR, I, MA 

components, and the length of the seasonal period, 

respectively. 

The general equation for a SARIMA(p, d, q)(P, D, Q, s) 

model can be written as: 

 

Y_t = c + Φ₁Y_(t-1) + Φ₂Y_(t-2) + ... + Φ_pY_(t-p) + θ₁ε_(t-

1) + θ₂ε_(t-2) + ... + θ_qε_(t-q) + Φ₁sY_(t-s) + Φ₂sY_(t-2s) + 

... + Φ_PsY_(t-Ps) + θ₁sε_(t-s) + θ₂sε_(t-2s) + ... + θ_Qsε_(t-

Qs) + ε_t  ………………………………...(2) 

 

The seasonal component captures the periodic patterns in the 

data, and its inclusion in the model enables better forecasting 

accuracy for data with seasonal fluctuations. 

 

SARIMA: 

MAE: 141.8403469611237 

MSE: 22660.744501731195 

RMSE: 150.5348614166539 

 

 

Fig 3.1  Sarima Prediction vs Actual on 

TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR 

 

LSTM 

Long Short-Term Memory (LSTM) is a type of recurrent 

neural network (RNN) architecture designed to overcome the 

limitations of traditional RNNs in capturing long-term 

dependencies in sequential data. LSTMs are particularly 

effective in time series forecasting tasks due to their ability to 

retain and utilize information over extended time intervals. 

They consist of several key components: 

 

Input Gate: 

The input gate determines the relevance of new input to the 

current cell state. It is computed as: 

 

iₜ = σ(Wᵢ · [hₜ₋₁, xₜ] + bᵢ)   ……………………………….....(4) 
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where iₜ is the input gate activation, hₜ₋₁ is the previous hidden 

state, xₜ is the current input, Wᵢ and bᵢ are the learnable 

weights and biases associated with the input gate, and σ 

represents the sigmoid activation function. 

 

Forget Gate: 

The forget gate determines what information from the 

previous cell state should be forgotten. It is calculated as: 

 

fₜ = σ(Wf · [hₜ₋₁, xₜ] + bf)    ………………………………..(5) 

 

where fₜ is the forget gate activation, Wf and bf are the 

learnable weights and biases associated with the forget gate. 

 

Cell State Update: 

The cell state is updated by incorporating new input and 

selectively forgetting previous information. It involves the 

following steps: 

 

C̃ₜ = tanh(Wc · [hₜ₋₁, xₜ] + bc)   …………………..….(6) 

 

where C̃ₜ represents the candidate cell state, Wc and bc are the 

learnable weights and biases associated with the candidate 

cell state. 

 

Cell State Update Gate: 

The cell state update gate determines how much of the 

candidate cell state should be added to the current cell state. It 

is calculated as: 

 

gₜ = σ(Wg · [hₜ₋₁, xₜ] + bg)   ………………………………..(7) 

 

where gₜ is the cell state update gate activation, Wg and bg are 

the learnable weights and biases associated with the cell state 

update gate. 

 

Cell State: 

The cell state is updated by combining the previous cell state 

with the candidate cell state, controlled by the forget gate and 

the cell state update gate: 

 

Cₜ = fₜ * Cₜ₋₁ + iₜ * gₜ   ……………………………………...(8) 

 

where Cₜ represents the updated cell state. 

 

Output Gate: 

The output gate determines the relevance of the current cell 

state to the output. It is calculated as: 

 

oₜ = σ(Wo · [hₜ₋₁, xₜ] + bo)   ……………………………….(9) 

 

where oₜ is the output gate activation, Wo and bo are the 

learnable weights and biases associated with the output gate. 

 

Hidden State: 

The hidden state is calculated by applying the output gate to 

the updated cell state: 

 

hₜ = oₜ * tanh(Cₜ)  ………………………………………...(10) 

 

where hₜ represents the hidden state. 

 

LSTMs employ these components to update and propagate 

information over time, allowing them to capture long-term 

dependencies in sequential data. By selectively remembering 

and forgetting information, LSTMs can effectively handle 

time series data with complex patterns and temporal 

dependencies. 

 

LSTM: 

MAE: 64.59958984375 

MSE: 5476.223884849548 

RMSE: 74.00151272000828 

 
 

Fig 3.2  LSTM Prediction vs Actual on 

TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR 
 

GRU 

The Gated Recurrent Unit (GRU) model is a variant of 

recurrent neural network (RNN) that is designed to capture 

and learn long-term dependencies in sequential data. It is 

particularly effective in tasks such as time series forecasting, 

natural language processing, and speech recognition. The 

GRU model achieves this by introducing gating mechanisms 

that selectively update and reset information within the 

hidden state. 

 

The GRU model consists of two main gates: the update gate 

(z) and the reset gate (r). These gates control the flow of 

information and determine how much of the past information 

to forget and how much of the new information to 

incorporate. 

 

The update gate (z) is responsible for deciding how much of 

the previous hidden state (h) should be combined with the 

candidate activation (h~) to produce the new hidden state 

(h_t). The update gate is computed as follows: 

 

z_t = sigmoid(W_z * x_t + U_z * h_(t-1))   ………….….(11) 

 

The reset gate (r) determines how much of the previous 

hidden state (h) should be forgotten or ignored when 

computing the candidate activation. The reset gate is 

calculated as follows: 
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r_t = sigmoid(W_r * x_t + U_r * h_(t-1))   ……………...(12) 

 

To compute the candidate activation (h~), which contains the 

new information to be added to the hidden state, the reset gate 

(r) is used to determine which parts of the previous hidden 

state (h) to reset. The candidate activation is computed as 

follows: 

 

h~_t = tanh(W_h * x_t + U_h * (r_t ⊙ h_(t-1)))    

….(13) 

 

where ⊙ denotes element-wise multiplication. 

 

Finally, the new hidden state (h_t) is computed by combining 

the update gate (z) and the previous hidden state (h) with the 

candidate activation (h~): 

 

h_t = (1 - z_t) ⊙ h_(t-1) + z_t ⊙ h~_t   ….(14) 

 

The GRU model iteratively updates the hidden state based on 

the input sequence, allowing it to capture and remember 

relevant information over long sequences. The final hidden 

state can then be used for various tasks, such as making 

predictions or generating outputs. 

 

The parameters W_z, U_z, W_r, U_r, W_h, and U_h are 

learnable weight matrices that are optimized during the 

training process using techniques like backpropagation 

through time (BPTT) and gradient descent to minimize the 

model's loss function. 

 

 GRU: 

MAE: 36.053271484375 

MSE: 2143.8972117114067 

RMSE: 46.30223765339432 

 

 

Fig 3.3  GRU Prediction vs Actual on 

TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR 
 

PROPHET 

The Prophet model is a time series forecasting model 

developed by Facebook's Core Data Science team. It is 

designed to handle the unique characteristics of time series 

data, such as seasonality, trend changes, and outliers. The 

Prophet model incorporates multiple components to capture 

these patterns: 

 

Trend Component: 

The Prophet model assumes that the trend in the time series 

can be modeled as a non-linear growth function. It uses a 

piecewise linear or logistic growth model to capture changes 

in the trend over time. The trend component is represented by 

the equation: 

 

g(t) = k(t) + ∑(n=1 to N) [a_n * f_n(t)] ….. (3) 

 

where g(t) represents the modeled trend at time t, k(t) is the 

baseline growth rate, a_n represents the individual seasonal 

components, and f_n(t) represents the seasonal functions. 

 

Seasonality Component: 

Prophet accounts for seasonality patterns in the data by 

incorporating multiple seasonal components, such as yearly, 

weekly, and daily seasonality. It models these components 

using Fourier series expansions to capture their periodic 

nature. 

 

Yearly Seasonality: 

The yearly seasonality component captures the annual 

patterns in the data. It is modeled using a Fourier series 

expansion with user-defined parameters. 

 

Weekly and Daily Seasonality: 

Prophet also incorporates weekly and daily seasonality 

components using similar Fourier series expansions. These 

components capture the recurring patterns that occur within a 

week or a day. 

 

Holiday Effects: 

The Prophet model allows the inclusion of known holidays 

and their impact on the time series. Users can provide a list of 

holidays and their corresponding dates, and the model 

incorporates these effects into the forecast. 

 

Uncertainty Estimation: 

Prophet provides uncertainty estimation by modeling the 

inherent noise and irregularities in the time series. It uses a 

Monte Carlo simulation approach to generate a range of 

possible future scenarios. 

 

Model Fitting: 

The Prophet model fits the time series data by optimizing the 

model parameters using a procedure known as Markov chain 

Monte Carlo (MCMC) sampling or a faster optimization 

algorithm called L-BFGS. The fitting process minimizes the 

difference between the observed data and the model's 

predictions. 

 

 Prophet: 

MAE: 54.78821932346668 

MSE: 4385.774347117845 

RMSE: 66.2251791021953 
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Fig 3.4  PROPHET Prediction vs Actual on 

           TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR 

 

KALMAN FILTER 

The Kalman Filter is a recursive algorithm used for 

estimating the state of a dynamic system based on noisy 

observations. It is widely applied in various fields, including 

time series analysis, control systems, and navigation. The 

Kalman Filter consists of several key components: 

 

State Transition Equation: 

The state transition equation describes how the system 

evolves over time. It is typically represented as: 

 

xₜ = Fₜ₋₁ * xₜ₋₁ + Bₜ₋₁ * uₜ₋₁ + wₜ₋₁   ……………………….(15) 

 

where xₜ is the state vector at time t, Fₜ₋₁ is the state transition 

matrix, Bₜ₋₁ is the control input matrix, uₜ₋₁ is the control 

input, and wₜ₋₁ is the process noise. 

 

Observation Equation: 

The observation equation relates the system's state to the 

observed measurements. It is represented as: 

 

zₜ = Hₜ * xₜ + vₜ   …………………………………………..(16) 

 

where zₜ is the observed measurement at time t, Hₜ is the 

observation matrix, xₜ is the state vector, and vₜ is the 

measurement noise. 

 

State Estimate and Covariance: 

The Kalman Filter maintains an estimate of the system's state 

and its associated uncertainty, called the state estimate (x̂ₜ) 

and the state covariance (Pₜ). These estimates are updated 

based on the observed measurements and the predicted state. 

 

Kalman Gain: 

The Kalman Gain (Kₜ) determines the balance between the 

predicted state and the observed measurement. It is calculated 

as: 

 

Kₜ = Pₜ₋₁ * Hₜᵀ * (Hₜ * Pₜ₋₁ * Hₜᵀ + Rₜ)⁻¹   ………………....(17) 

where Pₜ₋₁ is the previous state covariance, Hₜᵀ is the 

transpose of the observation matrix, Rₜ is the measurement 

noise covariance. 

State Update: 

The state update step incorporates the observed measurement 

to refine the state estimate. It is computed as: 

 

x̂ₜ = xₜ₋₁ + Kₜ * (zₜ - Hₜ * xₜ₋₁)   …………………………...(18) 

 

Covariance Update: 

The covariance update step updates the state covariance based 

on the Kalman Gain. It is calculated as: 

 

Pₜ = (I - Kₜ * Hₜ) * Pₜ₋₁   …………………………………..(19) 

 

where I is the identity matrix. 

 

Prediction Step: 

The prediction step predicts the state and covariance for the 

next time step using the state transition equation. It is 

computed as: 

 

xₜ₊₁₊ = Fₜ * x̂ₜ + Bₜ * uₜ   …………………………………..(20) 

 

Pₜ₊₁₊ = Fₜ * Pₜ * Fₜᵀ + Qₜ  ………………………………….(21) 

 

where Qₜ is the process noise covariance. 

 

The Kalman Filter iteratively updates the state estimate and 

covariance based on the observed measurements, and then 

predicts the state and covariance for the next time step. This 

recursive process allows for accurate estimation of the 

system's state even in the presence of noisy measurements 

and uncertain dynamics.  

 

Kalman Filter: 

MAE: 89.33440507567819 

MSE: 8921.84962199587 

RMSE: 94.45554309830563 

 

 

Fig 3.5  KALMAN Prediction vs Actual on 

         TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR 
 

 



International Journal of Computer Sciences and Engineering                                                                            Vol.11(1), Nov 2023 

© 2023, IJCSE All Rights Reserved                                                                                                                                              18 

ENSEMBLE MODELS 

 

AVERAGE  

The Average model, also known as the Simple Average 

model, is a basic ensemble model used for time series 

forecasting. In this approach, we combine the predictions 

from multiple individual forecasting models by taking their 

average. The Average model does not involve complex 

equations or components. The process can be summarized as 

follows: 

 

Model Selection: We select a set of individual forecasting 

models to include in the ensemble. These models can be 

diverse in nature, such as ARIMA, exponential smoothing, or 

neural networks. 

 

Individual Model Training: We train each individual model 

using historical time series data. The training process depends 

on the specific modeling technique used for each model. For 

example, ARIMA models require parameter estimation, while 

neural networks require training using backpropagation. 

 

Individual Model Forecasting: We make predictions using 

each trained individual model on the test dataset or future 

time points of interest. Each model generates its own set of 

forecasts based on its learned patterns and characteristics. 

 

Ensemble Combination: We combine the individual forecasts 

by calculating their average. For each time point, we sum the 

predictions from each model and divide by the total number 

of models: 

 

Forecast(t) = (1/N) * Σ Forecastₙ(t)  ……………………..(22) 

 

where Forecast(t) is the ensemble forecast at time t, N is the 

total number of individual models, and Forecastₙ(t) represents 

the forecast of the nth individual model at time t. 

 

Evaluation and Performance: We assess the performance of 

the Average model using appropriate evaluation metrics such 

as mean squared error (MSE), mean absolute error (MAE), or 

root mean squared error (RMSE). We compare the ensemble's 

performance with the individual models and select the 

appropriate metrics based on our forecasting goals. 

 

The Average model is a simple and intuitive ensemble 

approach that we can easily implement. It leverages the 

diversity of individual models to reduce bias and provide a 

more robust forecast. However, it does not consider the 

varying strengths or accuracies of each individual model. It 

assumes an equal weighting for all models, which may not be 

optimal in certain cases. 

  

 Average: 

MAE: 28.41425993021154 

MSE: 1409.217635076121 

RMSE: 37.53954761416447 

 

 

Fig 3.6  Average Prediction vs Actual on 

          TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR 
 

WEIGHTED AVERAGE 

The Weighted Average model is an ensemble approach we 

use for time series forecasting, where we combine the 

predictions from multiple individual models using weighted 

averages. This allows us to assign different importance or 

weights to each individual model based on their performance 

or credibility. The working of the Weighted Average model 

can be described as follows: 

 

Model Selection: We select a set of individual forecasting 

models to include in the ensemble. These models can be 

diverse in nature, such as ARIMA, exponential smoothing, or 

machine learning algorithms. 

 

Individual Model Training: We train each individual model 

using historical time series data. The training process varies 

depending on the specific modeling technique used for each 

model. For example, ARIMA models require parameter 

estimation, while machine learning models require training 

using appropriate algorithms. 

 

Individual Model Forecasting: We make predictions using 

each trained individual model on the test dataset or future 

time points of interest. Each model generates its own set of 

forecasts based on its learned patterns and characteristics. 

 

Weight Assignment: We assign weights to each individual 

model based on their performance or credibility. The weights 

can be determined using various methods, such as cross-

validation, error metrics, or expert judgment. The weights 

should reflect the relative importance or reliability of each 

model in the ensemble. 

 

Ensemble Combination: We combine the individual forecasts 

using weighted averages. For each time point, we multiply 

the prediction from each model by its corresponding weight, 

and then sum these weighted predictions to obtain the 

ensemble forecast: 

 

Forecast(t) = Σ (Weightₙ * Forecastₙ(t))  ………………...(23) 
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where Forecast(t) is the ensemble forecast at time t, Weightₙ 

is the weight assigned to the nth individual model, and 

Forecastₙ(t) represents the forecast of the nth individual 

model at time t. 

 

Evaluation and Performance: We assess the performance of 

the Weighted Average model using appropriate evaluation 

metrics such as mean squared error (MSE), mean absolute 

error (MAE), or root mean squared error (RMSE). We 

compare the ensemble's performance with the individual 

models and adjust the weights accordingly to optimize the 

overall forecasting accuracy. 

 

The Weighted Average model provides us with flexibility in 

incorporating the strengths of individual models by assigning 

different weights. It allows us to capture the diversity of the 

ensemble members and adjust their contributions based on 

their performance. By properly assigning weights, the 

Weighted Average model can potentially enhance the overall 

forecasting accuracy and robustness in capturing the 

underlying patterns and trends in the time series data. 

  

Weighted: 

MAE: 30.59584069611674 

MSE: 1497.569870700234 

RMSE: 38.6984479107397 

 

 

Fig 8.7 Weighted Average Prediction vs Actual on 

        TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR 

 

STACKING 

The Stacking Ensemble model is an advanced ensemble 

approach used for time series forecasting, which combines 

the predictions from multiple individual models by training a 

meta-model on their outputs. The working of the Stacking 

Ensemble model can be described as follows: 

 

Model Selection: The ensemble team selects a diverse set of 

individual forecasting models to include in the ensemble. 

These models can be different in nature, such as ARIMA, 

exponential smoothing, neural networks, or random forests. 

 

Training Phase: 

a. Individual Model Training: Each team member trains their 

assigned individual model using historical time series data. 

The training process varies depending on the specific 

modeling technique used for each model. For example, 

ARIMA models require parameter estimation, while neural 

networks require training using backpropagation. 

b. Individual Model Forecasting: After training, each team 

member generates predictions using their individual model on 

the test dataset or future time points of interest. Each model 

produces its own set of forecasts based on its learned patterns 

and characteristics. 

 

Meta-Model Training: 

a. Ensemble Input: The ensemble team combines the 

individual model forecasts into a matrix or a new feature set, 

denoted as X_meta. Each row of X_meta represents a specific 

time point, and each column corresponds to the prediction of 

an individual model. 

b. Ensemble Target: The ensemble team defines a target 

variable, denoted as y_meta, which represents the true values 

or the actual observations at each time point. 

c. Meta-Model Training: The team trains a meta-model, such 

as a linear regression or a neural network, using X_meta and 

y_meta as the input and target variables, respectively. The 

meta-model learns to capture the relationships between the 

individual model predictions and the actual values, aiming to 

make a more accurate forecast. 

 

Ensemble Combination: 

a. Individual Model Forecast Combination: Each team 

member generates their own individual model forecast on the 

test dataset or future time points. 

b. Meta-Model Input: The ensemble team combines these 

individual model forecasts into a matrix or feature set, 

denoted as X_ensemble. Each row of X_ensemble 

corresponds to a specific time point, and each column 

represents the prediction of an individual model. 

c. Meta-Model Forecast: The team uses the trained meta-

model to make the final ensemble forecast by providing 

X_ensemble as input. The meta-model combines the 

individual model predictions based on their learned 

relationships to generate an ensemble forecast. 

 

Evaluation and Performance: The ensemble team evaluates 

the performance of the Stacking Ensemble model using 

appropriate evaluation metrics such as mean squared error 

(MSE), mean absolute error (MAE), or root mean squared 

error (RMSE). They compare the ensemble's performance 

with the individual models and assess the effectiveness of the 

meta-model in improving forecasting accuracy. 

 

The Stacking Ensemble model leverages the diverse 

predictions of individual models by training a meta-model to 

capture their relationships and generate a more accurate 

ensemble forecast. By combining the strengths of different 

models, the Stacking Ensemble model aims to improve 

forecasting accuracy and capture the underlying patterns and 

trends in the time series data. 

 

Stacking: 

MAE: 14.014427660820074 

MSE: 282.12701948753875 

RMSE: 16.79663714817757 
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Fig 3.8 Stacking Prediction vs Actual on 

          TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR 

 

BAGGING 

The Bagging Ensemble model is a powerful ensemble 

approach utilized for time series forecasting, where multiple 

individual models are trained on different subsets of the data 

through bootstrapping and their predictions are combined to 

make the final forecast. The working of the Bagging 

Ensemble model can be described as follows: 

 

Model Selection: The ensemble team selects a diverse set of 

individual forecasting models to include in the ensemble. 

These models can be of various types, such as ARIMA, 

exponential smoothing, neural networks, or random forests. 

 

Training Phase: 

a. Bootstrapping: Each team member creates multiple 

bootstrap samples by randomly selecting data points with 

replacement from the original time series dataset. These 

bootstrap samples are used to train different instances of the 

individual models. 

b. Individual Model Training: Each team member trains their 

assigned individual model using the respective bootstrap 

samples. The training process depends on the specific 

modeling technique used for each model. For example, 

ARIMA models require parameter estimation, while neural 

networks involve training through backpropagation. 

c. Individual Model Forecasting: After training, each team 

member generates predictions using their individual model on 

the test dataset or future time points of interest. Each model 

produces its own set of forecasts based on its learned patterns 

and characteristics. 
 

Ensemble Combination: 

a. Individual Model Forecast Combination: Each team 

member generates their own individual model forecast on the 

test dataset or future time points. 

b. Ensemble Forecast: The ensemble team combines the 

individual model forecasts by aggregating them, typically 

using the average or majority voting scheme. This 

aggregation helps to reduce the variability and biases present 

in the individual models, resulting in a more robust and 

accurate ensemble forecast. 
 

Evaluation and Performance: The ensemble team evaluates 

the performance of the Bagging Ensemble model using 

appropriate evaluation metrics such as mean squared error 

(MSE), mean absolute error (MAE), or root mean squared 

error (RMSE). They compare the ensemble's performance 

with the individual models and assess the effectiveness of the 

bagging technique in improving forecasting accuracy. 

 

The Bagging Ensemble model leverages the power of 

multiple individual models trained on different subsets of data 

to reduce overfitting and improve the overall forecasting 

performance. By combining the predictions of diverse models 

through bootstrap aggregation, the Bagging Ensemble model 

enhances the accuracy and stability of time series forecasts. 

 

Bagging: 

MAE: 36.147939453125 

MSE: 2430.859116809368 

RMSE: 49.30374343606546 

 

 

Fig 3.9 Bagging Prediction vs Actual on 

         TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR 

 

BOOSTING 

The Boosting Ensemble model is a powerful ensemble 

approach used for time series forecasting, where multiple 

weak individual models are sequentially trained to correct the 

errors of their predecessors and improve the overall forecast. 

The working of the Boosting Ensemble model can be 

described as follows: 

 

Model Selection: The ensemble team selects a set of weak 

individual models, often referred to as base learners, to 

include in the ensemble. These base learners can be simple 

models such as decision trees or linear regression models. 

 

Training Phase: 

a. Initial Model Training: The first base learner is trained on 

the original time series data. This initial model may not 

perform well, but it serves as a starting point for the boosting 

process. 

b. Sequential Model Training: Subsequent base learners are 

trained in a sequential manner, with each model aiming to 

correct the errors made by its predecessors. During training, 

more emphasis is given to the data points that were 

previously mispredicted, allowing the subsequent models to 

focus on capturing the remaining patterns and improving 

overall accuracy. 
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c. Weighted Data Sampling: To emphasize the mispredicted 

data points, the ensemble team assigns weights to each 

observation in the training data. Initially, all weights are set to 

equal values, but as the boosting process proceeds, the 

weights are adjusted based on the errors made by the previous 

models. This creates a feedback mechanism that prioritizes 

the mispredicted data points in subsequent model training. 

d. Model Weighting: After training each base learner, the 

ensemble team assigns weights to the individual models 

based on their performance. Models with lower errors are 

given higher weights, indicating their relative importance in 

the ensemble's final forecast. 

 

Ensemble Combination: 

a. Weighted Model Aggregation: The ensemble team 

combines the predictions of individual models by taking a 

weighted average of their forecasts. The weights assigned to 

each model reflect their performance and contribution to the 

overall ensemble forecast. 

 

Evaluation and Performance: The ensemble team evaluates 

the performance of the Boosting Ensemble model using 

appropriate evaluation metrics such as mean squared error 

(MSE), mean absolute error (MAE), or root mean squared 

error (RMSE). They compare the ensemble's performance 

with the individual models and assess the effectiveness of the 

boosting technique in improving forecasting accuracy. 

 

The Boosting Ensemble model leverages the sequential 

training of weak base learners to iteratively correct errors and 

improve forecasting accuracy. By assigning weights to 

models and emphasizing mispredicted data points, the 

Boosting Ensemble model focuses on capturing the remaining 

patterns and improving overall performance. The iterative 

nature of the boosting process allows the ensemble to adapt 

and learn from previous mistakes, resulting in a powerful 

forecasting model for time series data. 

 

Boosting: 

MAE: 36.147939453125 

MSE: 2430.859116809368 

RMSE: 49.30374343606546 

 

 

Fig 3.10 Boosting Prediction vs Actual on 

TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR 

4. Experimental Method/Procedure/Design 

 

4.1  Train - Test Split 

There exist a multitude of models that can predict time series. 

A plethora of forecasting strategies are at our disposal when it 

comes to predicting sequences over continuous periods. Now, 

for stock price prediction, any time series algorithm should be 

adjusted to fit the models before being applied. Following the 

manipulation of data, 80% of said information served as 

training sets, with a further 20% being allocated to test sets in 

order to cross-analyze predicted outcomes and actual results. 

To compare the trained prediction, the forecast for the next 60 

days was used. 

 

4.2 Handling Missing Data 

In order to proceed, it is essential that the information which 

has been acquired maintains uniformity throughout. In 

contrast to other time series, stock data has regular intervals 

because, depending on the region, the market is closed on 

weekends and major holidays. We have taken the first and 

last dates of the series to obtain the date range in order to 

accomplish that. The number of available dates and the 

number of missing dates were then determined. It is most 

advisable to complete any gaps in knowledge by seeking the 

nearest corresponding data. Voids in information can be 

addressed through identifying and utilizing its closest 

approximation available. Optimal resolution of incomplete 

facts requires strategic identification followed by subsequent 

application of relevant close-fitting parallels for purposeful 

synthesis towards fulfillment of informational requirements. 

Numerous strategies can be utilized to verify the exactness 

and fidelity of our amassed data. Given that Saturday's data 

derives from the prior day, and Sunday utilizes information 

drawn from the former row, this approach is optimal. 

 

SARIMA  

The Seasonal Autoregressive Integrated Moving Average 

(SARIMA) model is a statistical model used to analyze and 

forecast time series data with seasonal patterns. An extension 

of the ARIMA model, it is being utilized for time series that 

do not possess any seasonal attributes. 

 

The SARIMA framework considers the cyclical characteristic 

of a chronology, that is, the repeated arrangement which 

occurs over constant period spans such as days or weeks. It 

does this by incorporating additional terms in the ARIMA 

model to capture the seasonal behavior of the data. 

 

The SARIMA model is defined by three parameters: p, d, and 

q, which correspond to non-seasonal autoregressive order, 

differencing order, and moving average order, respectively. It 

also has three additional seasonal parameters: P, D, and Q, 

which correspond to seasonal autoregressive order, seasonal 

differencing order, and seasonal moving average order, 

respectively. The parameters represent the number of time 

periods in a season. 

 

In order to implement a SARIMA model for time series 

analysis, estimation of its parameters is carried out via the 
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maximum likelihood method. The goal entails identifying 

optimal parameter values that are most likely to result in 

observing data conforming with the prescribed model 

specifications. The model is then used to forecast future 

values of the time series. 

 

Stationarity vs Seasonality 

Stationarity and seasonality are two important concepts in 

time series analysis that describe different aspects of the data. 

Stationarity refers to the statistical properties of the time 

series remaining constant over time. Put simply, the statistical 

parameters of average, deviation and correlation should 

remain stable across time. In the realm of statistical analysis, 

a time series that remains consistent with its own set of data-

driven properties over an extended period can be classified as 

stationary. This classification applies irrespective of any 

specific interval under scrutiny during one's inspection and 

evaluation process. The concept of stationarity holds great 

significance in time series analysis as it enables us to 

formulate more precise prognoses and estimates about the 

collected data. 

 

In contrast, the concept of seasonality refers to recurrent 

oscillations within a time series that occur at fixed junctures. 

One may attribute this occurrence to variables outside of 

oneself, such as alterations in atmospheric conditions or 

customary occasions. One potential method for identifying 

seasonal patterns involves scrutinizing the autocorrelation 

function (ACF) of a given temporal sequence. This technique 

involves computing correlations between sequential 

observations in time series data and helps identify patterns 

that repeat themselves over fixed intervals. This methodology 

allows for measurement of correlation across dissimilar lags 

in observed data sets. 

 

One salient point of divergence that distinguishes stationarity 

from seasonality is the former's proclivity toward rendering 

unchanging overall statistical properties over time, in contrast 

to the latter which encompasses cyclic patterns exhibiting 

regularity. A time series can be stationary with or without 

seasonality. Should the time series be unable to maintain a 

stationary state, there arises an inherent complexity in 

producing precise predictions concerning its data due to 

fluctuating statistical properties over distinct periods of time. 

 

Dickey-Fuller Test 

The statistical assessment known as the Dickey-Fuller test is 

used to gauge whether or not a given time series possesses 

stationarity. In the context of building a Seasonal 

Autoregressive Integrated Moving Average (SARIMA) 

model, it is important to ensure that the time series being 

analyzed is stationary. This is because SARIMA models are 

designed to work with stationary time series data. 

 

If the Dickey-Fuller test indicates that the time series is not 

stationary, then differencing can be used to transform the data 

into a stationary series. The process of differencing entails the 

subtraction operation between each value present in a time 

series and its predecessor. The recursive nature of this 

technique allows one to continue said operation until 

stationarity is achieved within the aforementioned time series. 

Once the data has been differenced and made stationary, it 

can be used as input to the SARIMA model. 

 

LSTM 

Long Short-Term Memory (LSTM) is a type of Recurrent 

Neural Network (RNN) architecture that is designed to 

overcome the limitations of traditional RNNs in processing 

and remembering long-term dependencies in sequential data. 

This is particularly applicable when handling complex 

sequences and retaining information for prolonged durations. 

 

The LSTM model includes a special type of cell that can 

selectively remember or forget information over time, 

allowing it to effectively handle long-term dependencies in 

the data. Within the confines of a cellular structure, three 

gates preside over and regulate the dissemination of data: 

namely, an intake gate that receives information from various 

external stimuli; furthermore, a forgetful gateway which 

purges previous informational inputs as necessary while 

simultaneously retaining pertinent facts to prevent repetition. 

Last but not least is an output portal rather crucial for 

transmitting refined signals onto specific cells within its 

vicinity. 

 

The gate responsible for deciphering the amount of fresh data 

to be incorporated into the existing cell state is dubbed as 

input. Forget, on its part, presides over just how much 

information from past states should hit the road while output 

paves the way for deciding which current cellular details are 

pertinent enough to proceed forth onto succeeding time steps. 

 

The LSTM model learns the optimal values for the gate 

weights and biases through training on a labeled dataset using 

backpropagation through time. The data fed into the LSTM 

consists of a sequence of discrete units, and its output 

comprises an arrangement of forecasts. 

 

GRU 

A structural blueprint belonging to the broader family of 

recurrent neural network (RNN) facets is that of the Gated 

Recurrent Unit (GRU). With a focus on analytical capabilities 

in sequential data processing, including those which are 

temporal-based or otherwise expressed through linguistics 

and enunciation. This model bears a resemblance to the 

LSTM technique, although it boasts fewer digits and 

operations involved in its computations. That being said, it is 

more economical computationally than the latter. 

 

The GRU model includes a gating mechanism that allows it 

to selectively learn and remember important information 

while ignoring irrelevant information. The mechanism that 

controls access is constructed with two types of gates: the 

gateway to reset and a gateway for updating. 

 

The amount of the past hidden state to be disregarded is 

determined by the reset gate, while how much of the recent 

input should supplement and update with the current hidden 

state is decided based on what’s known as an update gate. 
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This gating mechanism enables the GRU to learn long-term 

dependencies in the input sequence, similar to the LSTM 

model. 

 

The GRU model is trained using backpropagation through 

time, where the weights and biases are updated using gradient 

descent to minimize the error between the predicted and 

actual outputs. The GRU is the recipient of a series of data 

points, and in turn it outputs a sequence of predictions. 

 

Prophet 

Prophet is a time series forecasting model developed by 

Facebook's Core Data Science team. It is an open-source 

model designed to handle time series data with seasonality, 

holidays, and other recurring patterns. Prophet is based on an 

additive model, where non-linear trends are fit with yearly, 

weekly, and daily seasonality, plus holiday effects. 

 

Prophet uses a decomposable time series model with three 

main components: trend, seasonality, and holidays. The 

element that signifies deviations from a repeating pattern in 

the data over time is denoted by the trend component. As for 

periodic transformations within the data such as daily, weekly 

or annual patterns can be traced through seasonality 

components. The holiday component captures the effect of 

holidays or other special events on the data. 

 

Prophet uses a Bayesian approach to model fitting, where it 

estimates the parameters of the model and generates posterior 

distributions for the forecasts. Within the model, one can 

manipulate a variety of hyperparameters to fine-tune its 

aptitude for detecting alterations in trends and seasonality 

alongside other elements. 

 

Prophet has several advantages over traditional time series 

models such as ARIMA or exponential smoothing. It is 

highly customizable and can handle missing data, changes in 

trend, and outliers. It also provides uncertainty estimates for 

the forecasts, which can be useful for decision-making. 

 

Kalman Filter 

The Kalman Filter is a recursive algorithm used for time 

series forecasting and state estimation. It operates by 

estimating the state of a system based on a sequence of 

observations. The working of the Kalman Filter can be 

summarized as follows: 

 

State Initialization: The Kalman Filter begins by initializing 

the state of the system at the starting time point. This initial 

state can include variables such as position, velocity, or any 

other relevant parameters depending on the specific 

application. 

 

Prediction Step: In the prediction step, the Kalman Filter 

predicts the state of the system at the next time point based on 

the previous state and the underlying system dynamics. It 

uses a set of transition equations to propagate the state 

forward in time, taking into account any known or assumed 

dynamics of the system. 

 

Measurement Update Step: After making the prediction, the 

Kalman Filter incorporates the measurement information 

obtained at the current time point. It compares the predicted 

state with the actual measurement to calculate the 

measurement residual, which represents the difference 

between the predicted and observed values. 

 

State Update Step: In the state update step, the Kalman Filter 

adjusts the predicted state based on the measurement residual 

and the measurement noise covariance. It calculates the 

Kalman Gain, which determines the optimal weighting 

between the predicted state and the measurement information. 

The Kalman Gain is adjusted based on the uncertainties 

associated with the predicted state and the measurement 

accuracy. 

 

Recursive Process: The Kalman Filter repeats the prediction, 

measurement update, and state update steps for each 

subsequent time point, continually refining the state estimate 

based on the observed measurements. The filter maintains 

and updates estimates of the system's state and its associated 

uncertainty as new data becomes available. 

 

Forecasting and Smoothing: In addition to state estimation, 

the Kalman Filter can also be used for forecasting future 

observations and smoothing past observations. By leveraging 

the estimated state and its associated uncertainty, the Kalman 

Filter provides a means to generate forecasts and obtain a 

more accurate representation of the underlying time series. 

 

The Kalman Filter is particularly useful when dealing with 

noisy or incomplete data, as it combines past observations 

with system dynamics to generate more accurate predictions. 

Its recursive nature allows it to adapt and adjust its estimates 

as new measurements become available, making it an 

effective tool for time series forecasting and state estimation 

in various fields, including finance, engineering, and signal 

processing. 

 

Ensemble Models 

Average 

An average ensemble model is a type of time series 

forecasting model that combines the forecasts of multiple 

models to improve the accuracy of predictions. In an average 

ensemble model, several individual models are trained on the 

same dataset using different algorithms or hyperparameters. 

The forecasts generated by each model are then averaged to 

produce a final prediction. By implementing this technique, 

one can effectively mitigate the negative effects caused by 

model inaccuracies and ultimately enhance the precision of 

prognostication. The potential efficacy of a standard 

ensemble model hinges upon the assortment and quality of 

each model utilized in said collection. The average ensemble 

model is a popular and effective approach in time series 

forecasting, particularly in situations where no single model 

is consistently accurate. 

 

Weighted Average 

In a weighted average ensemble model, several individual 

models are trained on the same dataset using different 
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algorithms or hyperparameters. Following the generation of 

predictions using individual models, a composite prediction is 

formed through the averaging of weightage. The procedure 

for determining these weights involves evaluating the 

aptitude of each model against information derived from 

validation sets. The strategy at play here emphasizes the 

superiority of models that exhibit exemplary performance on 

the validation dataset, whilst de-emphasizing those with a 

subpar showing. The weighted average ensemble model can 

help to further reduce the impact of individual model errors 

and improve the overall accuracy of the forecast. 

Nonetheless, similar to the common ensemble model at hand, 

the efficacy of this weighted average ensemble is reliant on 

both the divergence and caliber of its individual models. 

 

Stacking 

Instead of simply averaging the forecasts, the stacking 

ensemble model uses a meta-model to learn how to combine 

the forecasts of the individual models. The meta-model takes 

the forecasts generated by the individual models as inputs and 

learns to make a final prediction based on the patterns 

observed in the input forecasts. This approach can help to 

capture more complex relationships between the forecasts and 

improve the overall accuracy of the forecast. The stacking 

ensemble's efficacy hinges on the caliber of constituent 

models within the assemblage and the appropriate selection of 

meta-models along with their hyperparameters. One cannot 

discount these factors if they aspire to yield a well-

performing model for prediction purposes. 

 

Bagging 

In a bagging ensemble model, several individual models are 

trained on bootstrap samples of the original dataset, where 

each bootstrap sample is a random subset of the original data. 

The forecasts generated by each model are then combined 

using an average, where each model's forecast is weighted 

equally. Through the utilization of this strategy, one may 

potentially diminish the consequences arising from any 

flawed model performances and consequently enhance 

holistic precision within predictions. Bagging is particularly 

useful for unstable or sensitive models, as it can help to 

reduce the variance of the models and improve their stability. 

However, the effectiveness of the bagging ensemble model 

depends on the diversity and quality of the individual models 

used in the ensemble. 

 

Boosting 

In a boosting ensemble model, individual models are trained 

sequentially, where each subsequent model is trained to 

correct the errors of the previous model. Subsequent to the 

production of projections by individual models, a weighted 

mean is computed. The weight assigned to each model's 

projection in this average assessment corresponds with its 

efficacy when tested against training data. The strategy 

employed has the potential to enhance precision in predicting 

future events through an ongoing process, especially 

benefiting inadequate models. The success of the boosting 

ensemble technique is contingent upon both the caliber of its 

individual models and variables like selection methods, 

frequency of iterations and weight function choice. 

5. Results and Discussion 
 

We performed predictions on multiple datasets, all relevant to 

the stock market and referring to different share prices of 

different multinational conglomerates. Upon conclusion of 

prediction using all the models, the following results were 

observed: 

 

 

Fig 5.1 All Prediction vs Actual on 

DIS - The Walt Disney Company - NYSE - USA USD 

 

 

Fig 5.2 All Prediction vs Actual on 

AAF.L - Airtel Africa Plc - LSE - UK GBP 

 

 

Fig 5.3 All Prediction vs Actual on 

AAPL - Apple Inc - NasdaqGS - USA USD 
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Fig 5.4 All Prediction vs Actual on 

600519.SS - Kweichow Moutai Co., Ltd. - SSE - Shanghai CNY 
 

 

Fig 5.5 All Prediction vs Actual on 

1398.HK - Industrial and Commercial Bank of China Limited - HKE - 

Honkong HKD 
 

 

Fig 5.6 All Prediction vs Actual on 

TCS.BO - Tata Consultancy Services Limited - BSE - Mumbai INR 
 

 

Fig 5.7 All Prediction vs Actual on 

TATAMOTORS.NS - Tata Motors - NSE - India INR 

 

Fig 5.8 All Prediction vs Actual on 

RY.TO - Royal Bank of Canada - TSX - Toronto CAD 
 

 

Fig 5.9 All Prediction vs Actual on 

300750.SZ - Contemporary Amperex Technology Co., Limited - Shenzhen 

CNY 
 

 

Fig 12.10 All Prediction vs Actual on 

6758.T - Sony Group Corporation - TSE - Tokyo JPY 

 

Upon conducting tests on multiple tickers, the Stacking 

Ensemble model emerged as the most effective among the 

mentioned models. This superiority can be attributed to 

several key factors: 

 

1. Leveraging Model Diversity: The Stacking Ensemble 

model harnesses the power of diverse individual models by 

combining their predictions. By including a variety of 

forecasting techniques, such as ARIMA, LSTM, and Prophet, 

the ensemble captures a wider range of patterns and 

relationships in the time series data. This model diversity 

helps mitigate the limitations of individual models and 

enhances the overall forecasting accuracy. 
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2. Meta-Model Learning: The Stacking Ensemble model 

incorporates a meta-model that learns from the predictions of 

the individual models. Through training on the combined 

forecasts, the meta-model can identify and exploit 

complementary strengths among the individual models. It can 

effectively weigh and adjust the contributions of each model 

based on their respective performance and patterns captured, 

resulting in a more accurate ensemble forecast. 

 

3. Handling Complex Patterns: Time series data often exhibit 

complex patterns, such as trend, seasonality, and irregular 

fluctuations. The Stacking Ensemble model's combination of 

diverse models and meta-model allows for a more 

comprehensive representation and understanding of these 

patterns. The ensemble can capture long-term trends with 

models like ARIMA, capture short-term dependencies with 

models like LSTM, and incorporate seasonal components 

with models like Prophet. By blending these models, the 

ensemble can better handle the various complexities present 

in the data, leading to improved forecasting performance. 

 

4. Model Optimization: The Stacking Ensemble model 

provides an opportunity for further optimization through the 

selection and tuning of individual models and the meta-

model. Each individual model can be fine-tuned to extract the 

best possible forecasts, and the meta-model's parameters can 

be optimized to enhance the ensemble's performance. This 

flexibility in model selection and tuning allows the Stacking 

Ensemble to adapt to different time series characteristics and 

achieve superior forecasting accuracy. 

 

5. Mitigating Model Biases: Individual forecasting models 

may have inherent biases or limitations that affect their 

accuracy. However, by combining multiple models in the 

Stacking Ensemble, these biases can be minimized or even 

eliminated. The ensemble's aggregation of diverse models 

helps to average out individual model errors, reducing the 

impact of specific biases and enhancing the overall robustness 

of the forecast. 

 

Overall, the Stacking Ensemble model's ability to leverage 

model diversity, meta-model learning, and optimized 

combination of forecasts allows it to outperform other models 

in terms of forecasting accuracy. Its capability to handle 

complex patterns, mitigate biases, and adapt to different time 

series characteristics makes it a powerful and reliable choice 

for time series forecasting across multiple tickers. 

 

6. Conclusion and Future Scope  
 

In conclusion, our research paper aimed to compare the 

effectiveness of various time series forecasting models on 

multiple tickers. Through rigorous testing and analysis, we 

found that the Stacking Ensemble model emerged as the most 

efficient and accurate forecasting approach. The success of 

the Stacking Ensemble model can be attributed to its ability to 

leverage model diversity, meta-model learning, and optimized 

combination of forecasts. 

 

By incorporating a diverse set of individual models, such as 

ARIMA, LSTM, and Prophet, the Stacking Ensemble model 

captures a wide range of patterns and relationships present in 

the time series data. This model diversity enables the 

ensemble to overcome the limitations of individual models 

and better handle complex patterns like trend, seasonality, 

and irregular fluctuations. The ensemble's meta-model 

learning further enhances its forecasting accuracy by 

effectively weighing and adjusting the contributions of each 

individual model based on their respective performance and 

captured patterns. 

 

Additionally, the Stacking Ensemble model demonstrated its 

adaptability and flexibility by allowing the inclusion of new 

models or modifications to existing ones. This adaptability 

ensures that the ensemble can continually evolve and improve 

its forecasting performance as new models or techniques 

become available. 

 

Moreover, the Stacking Ensemble model's ability to mitigate 

biases and select the most accurate models through its 

training process provides a valuable advantage. By averaging 

out individual model errors and automatically selecting the 

best models, the ensemble enhances the robustness and 

reliability of its forecasts. 

 

Our research findings strongly support the superiority of the 

Stacking Ensemble model in time series forecasting across 

multiple tickers. Its ability to leverage model diversity, meta-

model learning, and optimized combination of forecasts sets 

it apart from other models examined in our study. The 

Stacking Ensemble model's capacity to handle complex 

patterns, adapt to different data characteristics, and 

incorporate new models ensures its relevance and 

effectiveness in a variety of forecasting scenarios. 

 

The Stacking Ensemble model represents a powerful 

forecasting approach that outperforms other models by 

capturing the strengths of individual models, mitigating their 

limitations, and producing highly accurate and reliable 

forecasts. As such, it holds great potential for practitioners 

and researchers seeking superior time series forecasting 

results in financial markets and beyond. 
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